2014 USAJMO Problems/Problem 1: Difference between revisions
Mathcool2009 (talk | contribs) |
Expilncalc (talk | contribs) |
||
| (3 intermediate revisions by 3 users not shown) | |||
| Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
Let <math>a</math>, <math>b</math>, <math>c</math> be real numbers greater than or equal to <math>1</math>. Prove that <cmath>\min{\left (\frac{10a^2-5a+1}{b^2-5b+ | Let <math>a</math>, <math>b</math>, <math>c</math> be real numbers greater than or equal to <math>1</math>. Prove that <cmath>\min{\left (\frac{10a^2-5a+1}{b^2-5b+10},\frac{10b^2-5b+1}{c^2-5c+10},\frac{10c^2-5c+1}{a^2-5a+10}\right )}\leq abc </cmath> | ||
==Solution== | ==Solution== | ||
Since <math>(a-1)^5\ | Since <math>(a-1)^5\ge 0</math>, | ||
<cmath>a^5-5a^4+10a^3-10a^2+5a-1\ | <cmath>a^5-5a^4+10a^3-10a^2+5a-1\ge 0</cmath> | ||
or | or | ||
<cmath>10a^2-5a+1\ | <cmath>10a^2-5a+1\le a^3(a^2-5a+10)</cmath> | ||
Since <math>a^2-5a+10=\left( a-\dfrac{5}{2}\right)^2 +\dfrac{15}{4} | Since <math>a^2-5a+10=\left( a-\dfrac{5}{2}\right)^2 +\dfrac{15}{4}>0</math>, | ||
<cmath> \frac{10a^2-5a+1}{a^2-5a+10}\ | <cmath> \frac{10a^2-5a+1}{a^2-5a+10}\le a^3 </cmath> | ||
Also note that <math>10a^2-5a+1=10\left( a-\dfrac{1}{4}\right)+\dfrac{3}{8} | Also note that <math>10a^2-5a+1=10\left( a-\dfrac{1}{4}\right)^2+\dfrac{3}{8}> 0</math>, | ||
We conclude | We conclude | ||
<cmath>0\ | <cmath>0\le \frac{10a^2-5a+1}{a^2-5a+10}\le a^3</cmath> | ||
Similarly, | Similarly, | ||
<cmath>0\ | <cmath>0\le \frac{10b^2-5b+1}{b^2-5b+10}\le b^3</cmath> | ||
<cmath>0\ | <cmath>0\le \frac{10c^2-5c+1}{c^2-5c+10}\le c^3</cmath> | ||
So <cmath>\left(\frac{10a^2-5a+1}{a^2-5a+10}\right)\left(\frac{10b^2-5b+1}{b^2-5b+10}\right)\left(\frac{10c^2-5c+1}{c^2-5c+10}\right)\ | So <cmath>\left(\frac{10a^2-5a+1}{a^2-5a+10}\right)\left(\frac{10b^2-5b+1}{b^2-5b+10}\right)\left(\frac{10c^2-5c+1}{c^2-5c+10}\right)\le a^3b^3c^3</cmath> | ||
or | or | ||
<cmath>\left(\frac{10a^2-5a+1}{b^2-5b+10}\right)\left(\frac{10b^2-5b+1}{c^2-5c+10}\right)\left(\frac{10c^2-5c+1}{a^2-5a+10}\right) \ | <cmath>\left(\frac{10a^2-5a+1}{b^2-5b+10}\right)\left(\frac{10b^2-5b+1}{c^2-5c+10}\right)\left(\frac{10c^2-5c+1}{a^2-5a+10}\right) \le(abc)^3</cmath> | ||
Therefore, | Therefore, | ||
<cmath> \min\left(\frac{10a^2-5a+1}{b^2-5b+10},\frac{10b^2-5b+1}{c^2-5c+10},\frac{10c^2-5c+1}{a^2-5a+10}\right )\ | <cmath> \min\left(\frac{10a^2-5a+1}{b^2-5b+10},\frac{10b^2-5b+1}{c^2-5c+10},\frac{10c^2-5c+1}{a^2-5a+10}\right )\le abc. </cmath> | ||
Latest revision as of 20:23, 15 April 2018
Problem
Let
,
,
be real numbers greater than or equal to
. Prove that
Solution
Since
,
or
Since
,
Also note that
,
We conclude
Similarly,
So
or
Therefore,