2014 IMO Problems/Problem 5: Difference between revisions
mNo edit summary |
m →Problem |
||
| Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
For each positive integer <math>n</math>, the Bank of Cape Town issues coins of denomination <math>\tfrac{1}{n}</math>. Given a finite collection of such coins (of not necessarily different denominations) with total value at most <math>99+\ | For each positive integer <math>n</math>, the Bank of Cape Town issues coins of denomination <math>\tfrac{1}{n}</math>. Given a finite collection of such coins (of not necessarily different denominations) with total value at most <math>99+\tfrac{1}{2}</math>, prove that it is possible to split this collection into <math>100</math> or fewer groups, such that each group has total value at most <math>1</math>. | ||
==Solution== | ==Solution== | ||
Revision as of 04:35, 9 October 2014
Problem
For each positive integer
, the Bank of Cape Town issues coins of denomination
. Given a finite collection of such coins (of not necessarily different denominations) with total value at most
, prove that it is possible to split this collection into
or fewer groups, such that each group has total value at most
.
Solution
Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.
See Also
| 2014 IMO (Problems) • Resources | ||
| Preceded by Problem 4 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Problem 6 |
| All IMO Problems and Solutions | ||