1991 AHSME Problems/Problem 7: Difference between revisions
No edit summary |
|||
| (2 intermediate revisions by one other user not shown) | |||
| Line 1: | Line 1: | ||
==Problem== | |||
If <math>x=\frac{a}{b}</math>, <math>a\neq b</math> and <math>b\neq 0</math>, then <math>\frac{a+b}{a-b}=</math> | |||
(A) <math>\frac{x}{x+1}</math> (B) <math>\frac{x+1}{x-1}</math> (C) <math>1</math> (D) <math>x-\frac{1}{x}</math> (E) <math>x+\frac{1}{x}</math> | (A) <math>\frac{x}{x+1}</math> (B) <math>\frac{x+1}{x-1}</math> (C) <math>1</math> (D) <math>x-\frac{1}{x}</math> (E) <math>x+\frac{1}{x}</math> | ||
==Solution== | |||
<math>\frac{a+b}{a-b}= \frac{\frac{a}{b} + 1}{\frac{a}{b} - 1} = \frac{x+1}{x-1}</math>, so the answer is <math>\boxed{B}</math>. | |||
== See also == | |||
{{AHSME box|year=1991|num-b=6|num-a=8}} | |||
[[Category: Introductory Algebra Problems]] | |||
{{MAA Notice}} | {{MAA Notice}} | ||
Latest revision as of 02:10, 28 September 2014
Problem
If
,
and
, then
(A)
(B)
(C)
(D)
(E)
Solution
, so the answer is
.
See also
| 1991 AHSME (Problems • Answer Key • Resources) | ||
| Preceded by Problem 6 |
Followed by Problem 8 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
| All AHSME Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America.