Art of Problem Solving

2004 AMC 10A Problems/Problem 2: Difference between revisions

m minor
Nathan wailes (talk | contribs)
No edit summary
Line 4: Line 4:
\otimes(a,b,c)=\frac{a}{b-c}
\otimes(a,b,c)=\frac{a}{b-c}
</math>
</math>
What is <math>\otimes</math><math>( \otimes</math><math>(1,2,3),</math><math>\otimes</math><math>(2,3,1),</math><math>\otimes</math><math>(3,1,2))</math>?
What is <math>\otimes<cmath>( \otimes</cmath>(1,2,3),<cmath>\otimes</cmath>(2,3,1),<cmath>\otimes</cmath>(3,1,2))</math>?


<math> \mathrm{(A) \ } -\frac{1}{2}\qquad \mathrm{(B) \ } -\frac{1}{4} \qquad \mathrm{(C) \ } 0 \qquad \mathrm{(D) \ } \frac{1}{4} \qquad \mathrm{(E) \ } \frac{1}{2} </math>
<math> \mathrm{(A) \ } -\frac{1}{2}\qquad \mathrm{(B) \ } -\frac{1}{4} \qquad \mathrm{(C) \ } 0 \qquad \mathrm{(D) \ } \frac{1}{4} \qquad \mathrm{(E) \ } \frac{1}{2} </math>


== Solution ==
== Solution ==
<math>\otimes</math><math> \left(\frac{1}{2-3}, \frac{2}{3-1}, \frac{3}{1-2}\right)=\displaystyle</math><math>\otimes</math><math>(-1,1,-3)=\frac{-1}{1+3}=-\frac{1}{4}\Longrightarrow\mathrm{(B)}</math>
<math>\otimes<cmath> \left(\frac{1}{2-3}, \frac{2}{3-1}, \frac{3}{1-2}\right)=</cmath>\otimes</math><math>(-1,1,-3)=\frac{-1}{1+3}=-\frac{1}{4}\Longrightarrow\mathrm{(B)}</math>


== See also ==
== See also ==
Line 15: Line 15:


[[Category:Introductory Algebra Problems]]
[[Category:Introductory Algebra Problems]]
{{MAA Notice}}

Revision as of 10:27, 4 July 2013

Problem

For any three real numbers $a$, $b$, and $c$, with $b\neq c$, the operation $\otimes$ is defined by: $\otimes(a,b,c)=\frac{a}{b-c}$ What is $\otimes<cmath>( \otimes</cmath>(1,2,3),<cmath>\otimes</cmath>(2,3,1),<cmath>\otimes</cmath>(3,1,2))$?

$\mathrm{(A) \ } -\frac{1}{2}\qquad \mathrm{(B) \ } -\frac{1}{4} \qquad \mathrm{(C) \ } 0 \qquad \mathrm{(D) \ } \frac{1}{4} \qquad \mathrm{(E) \ } \frac{1}{2}$

Solution

$\otimes<cmath> \left(\frac{1}{2-3}, \frac{2}{3-1}, \frac{3}{1-2}\right)=</cmath>\otimes$$(-1,1,-3)=\frac{-1}{1+3}=-\frac{1}{4}\Longrightarrow\mathrm{(B)}$

See also

2004 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America.