Art of Problem Solving

2012 AMC 10A Problems/Problem 2: Difference between revisions

Flamewire (talk | contribs)
Thecmd999 (talk | contribs)
Line 3: Line 3:
A square with side length 8 is cut in half, creating two congruent rectangles. What are the dimensions of one of these rectangles?
A square with side length 8 is cut in half, creating two congruent rectangles. What are the dimensions of one of these rectangles?


<math> \textbf{(A)}\ \emph{2\ by\ 4}\qquad\textbf{(B)}\ \emph{\ 2\ by\ 6}\qquad\textbf{(C)}\ \emph{\ 2\ by\ 8}\qquad\textbf{(D)}\ \emph{4\ by\ 4}\qquad\textbf{(E)}\ \emph{4\ by\ 8} </math>
<math> \textbf{(A)}\ 2\ by\ 4\qquad\textbf{(B)}\ \ 2\ by\ 6\qquad\textbf{(C)}\ \ 2\ by\ 8\qquad\textbf{(D)}\ 4\ by\ 4\qquad\textbf{(E)}\ 4\ by\ 8 </math>


== Solution ==
== Solution ==


Cutting the square in half will bisect one pair of sides while the other side will remain unchanged. Thus, the new square is <math>\frac{8}{2}*8</math>, or  <math>\qquad\textbf{(E)}\ 4*8</math>.
Cutting the square in half will bisect one pair of sides while the other side will remain unchanged. Thus, the new square is <math>\frac{8}{2}*8</math>, or  <math>\qquad\textbf{(E)}\ 4*8</math>.

Revision as of 18:38, 8 February 2012

Problem 2

A square with side length 8 is cut in half, creating two congruent rectangles. What are the dimensions of one of these rectangles?

$\textbf{(A)}\ 2\ by\ 4\qquad\textbf{(B)}\ \ 2\ by\ 6\qquad\textbf{(C)}\ \ 2\ by\ 8\qquad\textbf{(D)}\ 4\ by\ 4\qquad\textbf{(E)}\ 4\ by\ 8$

Solution

Cutting the square in half will bisect one pair of sides while the other side will remain unchanged. Thus, the new square is $\frac{8}{2}*8$, or $\qquad\textbf{(E)}\ 4*8$.