|
|
| (3 intermediate revisions by 2 users not shown) |
| Line 1: |
Line 1: |
| ==Problem==
| | #REDIRECT [[2000 AMC 12 Problems/Problem 11]] |
| | |
| Two non-zero real numbers, <math>a</math> and <math>b</math>, satisfy <math>ab=a-b</math>. Find a possible value of <math>\frac{a}{b}+\frac{b}{a}-ab</math>.
| |
| | |
| <math>\mathrm{(A)}\ -2 \qquad\mathrm{(B)}\ -\frac{1}{2} \qquad\mathrm{(C)}\ \frac{1}{3} \qquad\mathrm{(D)}\ \frac{1}{2} \qquad\mathrm{(E)}\ 2</math>
| |
| | |
| ==Solution==
| |
| | |
| <math>ab=a-b</math>
| |
| | |
| <math>\frac{a}{b}+\frac{b}{a}-ab=\frac{a^2+b^2}{ab}-ab=\frac{-a^2b^2+a^2+b^2}{ab}</math>
| |
| | |
| <math>\frac{-a^2+2ab-b^2+a^2+b^2}{ab}=2</math>.
| |
| | |
| E.
| |
| | |
| ==See Also==
| |
| | |
| {{AMC10 box|year=2000|num-b=14|num-a=16}}
| |