1986 AIME Problems/Problem 9: Difference between revisions
Dgreenb801 (talk | contribs) |
m moved TOC |
||
| (25 intermediate revisions by 17 users not shown) | |||
| Line 1: | Line 1: | ||
__TOC__ | |||
== Problem == | == Problem == | ||
In < | In <imath>\triangle ABC</imath>, <imath>AB= 425</imath>, <imath>BC=450</imath>, and <imath>AC=510</imath>. An interior [[point]] <imath>P</imath> is then drawn, and [[segment]]s are drawn through <imath>P</imath> [[parallel]] to the sides of the [[triangle]]. If these three segments are of an equal length <imath>d</imath>, find <imath>d</imath>. | ||
== Solution == | == Solution == | ||
=== Solution 1 === | === Solution 1 === | ||
<center><asy> | |||
size(200); | |||
pathpen = black; pointpen = black +linewidth(0.6); pen s = fontsize(10); | |||
pair C=(0,0),A=(510,0),B=IP(circle(C,450),circle(A,425)); | |||
/* construct remaining points */ | |||
pair Da=IP(Circle(A,289),A--B),E=IP(Circle(C,324),B--C),Ea=IP(Circle(B,270),B--C); | |||
pair D=IP(Ea--(Ea+A-C),A--B),F=IP(Da--(Da+C-B),A--C),Fa=IP(E--(E+A-B),A--C); | |||
D(MP("A",A,s)--MP("B",B,N,s)--MP("C",C,s)--cycle); | |||
dot(MP("D",D,NE,s));dot(MP("E",E,NW,s));dot(MP("F",F,s));dot(MP("D'",Da,NE,s));dot(MP("E'",Ea,NW,s));dot(MP("F'",Fa,s)); | |||
D(D--Ea);D(Da--F);D(Fa--E); | |||
MP("450",(B+C)/2,NW);MP("425",(A+B)/2,NE);MP("510",(A+C)/2); | |||
/*P copied from above solution*/ | |||
pair P = IP(D--Ea,E--Fa); dot(MP("P",P,N)); | |||
</asy></center> <!-- Asymptote replacement for Image:1986_AIME-9.png by azjps --> | |||
Let the points at which the segments hit the triangle be called <imath>D, D', E, E', F, F'</imath> as shown above. As a result of the lines being parallel, all three smaller triangles and the larger triangle are [[similar triangles|similar]] (<imath>\triangle ABC \sim \triangle DPD' \sim \triangle PEE' \sim \triangle F'PF</imath>). The remaining three sections are [[parallelogram]]s. | |||
By similar triangles, <imath>BE'=\frac{d}{510}\cdot450=\frac{15}{17}d</imath> and <imath>EC=\frac{d}{425}\cdot450=\frac{18}{17}d</imath>. Since <imath>FD'=BC-EE'</imath>, we have <imath>900-\frac{33}{17}d=d</imath>, so <imath>d=\boxed{306}</imath>. | |||
===Solution 2 === | |||
<asy> | |||
size(200); | |||
pathpen = black; pointpen = black +linewidth(0.6); pen s = fontsize(10); | |||
pair C=(0,0),A=(510,0),B=IP(circle(C,450),circle(A,425)); | |||
/* construct remaining points */ | |||
pair Da=IP(Circle(A,289),A--B),E=IP(Circle(C,324),B--C),Ea=IP(Circle(B,270),B--C); | |||
pair D=IP(Ea--(Ea+A-C),A--B),F=IP(Da--(Da+C-B),A--C),Fa=IP(E--(E+A-B),A--C); | |||
/* Construct P */ | |||
pair P = IP(D--Ea,E--Fa); dot(MP("P",P,NE)); | |||
pair X = IP(L(A,P,4), B--C); dot(MP("X",X,NW)); | |||
pair Y = IP(L(B,P,4), C--A); dot(MP("Y",Y,NE)); | |||
pair Z = IP(L(C,P,4), A--B); dot(MP("Z",Z,N)); | |||
D(A--X); D(B--Y); D(C--Z); | |||
D(MP("A",A,s)--MP("B",B,N,s)--MP("C",C,s)--cycle); | |||
MP("450",(B+C)/2,NW);MP("425",(A+B)/2,NE);MP("510",(A+C)/2); | |||
</asy> | |||
Construct cevians <imath>AX</imath>, <imath>BY</imath> and <imath>CZ</imath> through <imath>P</imath>. Place masses of <imath>x,y,z</imath> on <imath>A</imath>, <imath>B</imath> and <imath>C</imath> respectively; then <imath>P</imath> has mass <imath>x+y+z</imath>. | |||
Notice that <imath>Z</imath> has mass <imath>x+y</imath>. On the other hand, by similar triangles, <imath>\frac{CP}{CZ} = \frac{d}{AB}</imath>. Hence by mass points we find that <cmath> \frac{x+y}{x+y+z} = \frac{d}{AB} </cmath> Similarly, we obtain <cmath> \frac{y+z}{x+y+z} = \frac{d}{BC} \qquad \text{and} \qquad \frac{z+x}{x+y+z} = \frac{d}{CA} </cmath> Summing these three equations yields <cmath> \frac{d}{AB} + \frac{d}{BC} + \frac{d}{CA} = \frac{x+y}{x+y+z} + \frac{y+z}{x+y+z} + \frac{z+x}{x+y+z} = \frac{2x+2y+2z}{x+y+z} = 2 </cmath> | |||
Hence, <center><imath> d = \frac{2}{\frac{1}{AB} + \frac{1}{BC} + \frac{1}{CA}} = \frac{2}{\frac{1}{510} + \frac{1}{450} + \frac{1}{425}} = \frac{10}{\frac{1}{85}+\frac{1}{90}+\frac{1}{102}}</imath><imath>= \frac{10}{\frac{1}{5}\left(\frac{1}{17}+\frac{1}{18}\right)+\frac{1}{102}}=\frac{10}{\frac{1}{5}\cdot\frac{35}{306}+\frac{3}{306}}=\frac{10}{\frac{10}{306}} = \boxed{306}</imath></center> | |||
=== Solution 3 === | |||
<center><asy> | |||
size(200); | |||
pathpen = black; | |||
pointpen = black + linewidth(0.6); | |||
pen s = fontsize(10); | |||
// Define points | |||
pair C = (0,0), A = (510,0); | |||
pair B = IP(circle(C,450),circle(A,425)); | |||
// Construct remaining points | |||
pair Da = IP(circle(A,289),A--B); | |||
pair E = IP(circle(C,324),B--C); | |||
pair Ea = IP(circle(B,270),B--C); | |||
pair D = IP(Ea--(Ea+A-C),A--B); | |||
pair F = IP(Da--(Da+C-B),A--C); | |||
pair Fa = IP(E--(E+A-B),A--C); | |||
// Draw the main triangle | |||
draw(A--B--C--cycle); | |||
dot(MP("A",A,s)); | |||
dot(MP("B",B,N,s)); | |||
dot(MP("C",C,s)); | |||
// Mark and draw the other points | |||
dot(MP("D",D,NE,s)); | |||
dot(MP("E",E,NW,s)); | |||
dot(MP("F",F,s)); | |||
dot(MP("D'",Da,NE,s)); | |||
dot(MP("E'",Ea,NW,s)); | |||
dot(MP("F'",Fa,s)); | |||
// Draw connecting lines | |||
draw(D--Ea); | |||
draw(Da--F); | |||
draw(Fa--E); | |||
// Label distances | |||
label("450", (B+C)/2, NW); | |||
label("425", (A+B)/2, NE); | |||
label("510", (A+C)/2, S); | |||
// Additional point P | |||
pair P = IP(D--Ea, E--Fa); | |||
dot(MP("P",P,N)); | |||
</asy></center> <!-- Asymptote replacement for Image:1986_AIME-9.png by azjps --> | |||
Let the points at which the segments hit the triangle be called <imath>D, D', E, E', F, F'</imath> as shown above. As a result of the lines being parallel, all three smaller triangles and the larger triangle are [[similar triangles|similar]] (<imath>\triangle ABC \sim \triangle DD'P \sim \triangle PEE' \sim \triangle F'PF</imath>). The remaining three sections are [[parallelogram]]s. | |||
< | Since <imath>PDAF'</imath> is a parallelogram, we find <imath>PF' = AD</imath>, and similarly <imath>PE = BD'</imath>. So <imath>d = PF' + PE = AD + BD' = 425 - DD'</imath>. Thus <imath>DD' = 425 - d</imath>. By the same logic, <imath>EE' = 450 - d</imath>. | ||
Since <imath>\triangle DPD' \sim \triangle ABC</imath>, we have the [[proportion]]: | |||
=== Solution | <center><imath>\frac{425-d}{425} = \frac{PD}{510} \Longrightarrow PD = 510 - \frac{510}{425}d = 510 - \frac{6}{5}d</imath></center> | ||
Doing the same with <imath>\triangle PEE'</imath>, we find that <imath>PE' =510 - \frac{17}{15}d</imath>. Now, <imath>d = PD + PE' = 510 - \frac{6}{5}d + 510 - \frac{17}{15}d \Longrightarrow d\left(\frac{50}{15}\right) = 1020 \Longrightarrow d = \boxed{306}</imath>. | |||
=== Solution 4 === | |||
Define the points the same as above. | Define the points the same as above. | ||
Let < | Let <imath>[CE'PF] = a</imath>, <imath>[E'EP] = b</imath>, <imath>[BEPD'] = c</imath>, <imath>[D'PD] = d</imath>, <imath>[DAF'P] = e</imath> and <imath>[F'D'P] = f</imath> | ||
The key theorem we apply here is that the ratio of the areas of 2 similar triangles is the ratio of a pair of corresponding sides squared. | |||
Let the length of the segment be < | Let the length of the segment be <imath>x</imath> and the area of the triangle be <imath>A</imath>, using the theorem, we get: | ||
< | <imath>\frac {d + e + f}{A} = \left(\frac {x}{BC}\right)^2</imath>, <imath>\frac {b + c + d}{A}= \left(\frac {x}{AC}\right)^2</imath>, <imath>\frac {a + b + f}{A} = \left(\frac {x}{AB}\right)^2</imath>. | ||
Adding all these together and using <imath>a + b + c + d + e + f = A</imath> we get | |||
< | <imath>\frac {f + d + b}{A} + 1 = x^2 \cdot \left(\frac {1}{BC^2} + \frac {1}{AC^2} + \frac {1}{AB^2}\right)</imath> | ||
Using [[corresponding angles]] from parallel lines, it is easy to show that < | Using [[corresponding angles]] from parallel lines, it is easy to show that <imath>\triangle ABC \sim \triangle F'PF</imath>; since <imath>ADPF'</imath> and <imath>CFPE'</imath> are parallelograms, it is easy to show that <imath>FF' = AC - x</imath> | ||
Now we have the side length [[ratio]], so we have the area ratio | Now we have the side length [[ratio]], so we have the area ratio | ||
< | <imath>\frac {f}{A} = \left(\frac {AC - x}{AC}\right)^2 = \left(1 - \frac {x}{AC}\right)^2</imath>. By symmetry, we have | ||
< | <imath>\frac {d}{A} = \left(1 - \frac {x}{AB}\right)^2</imath> and <imath>\frac {b}{A} = \left(1 - \frac {x}{BC}\right)^2</imath> | ||
Substituting these into our initial equation, we have | Substituting these into our initial equation, we have | ||
< | <imath>1 + \sum_{cyc}\left(1 - \frac {x}{AB}\right) - \frac {x^2}{AB^2} = 0</imath> | ||
< | <imath>\implies 1 + \sum_{cyc}1 - 2 \cdot \frac {x}{AB} = 0</imath> | ||
< | <imath>\implies \frac {2}{\frac {1}{AB} + \frac {1}{BC} + \frac {1}{CA}} = x</imath> | ||
answer follows after some hideous computation | and the answer follows after some hideous computation. | ||
===Solution 5=== | |||
Refer to the diagram in solution 2; let <imath>a^2=[E'EP]</imath>, <imath>b^2=[D'DP]</imath>, and <imath>c^2=[F'FP]</imath>. Now, note that <imath>[E'BD]</imath>, <imath>[D'DP]</imath>, and <imath>[E'EP]</imath> are similar, so through some similarities we find that <imath>\frac{E'P}{PD}=\frac{a}{b}\implies\frac{E'D}{PD}=\frac{a+b}{b}\implies[E'BD]=b^2\left(\frac{a+b}{b}\right)^2=(a+b)^2</imath>. Similarly, we find that <imath>[D'AF]=(b+c)^2</imath> and <imath>[F'CE]=(c+a)^2</imath>, so <imath>[ABC]=(a+b+c)^2</imath>. Now, again from similarity, it follows that <imath>\frac{d}{510}=\frac{a+b}{a+b+c}</imath>, <imath>\frac{d}{450}=\frac{b+c}{a+b+c}</imath>, and <imath>\frac{d}{425}=\frac{c+a}{a+b+c}</imath>, so adding these together, simplifying, and solving gives <imath>d=\frac{2}{\frac{1}{425}+\frac{1}{450}+\frac{1}{510}}=\frac{10}{\frac{1}{85}+\frac{1}{90}+\frac{1}{102}}=\frac{10}{\frac{1}{5}\left(\frac{1}{17}+\frac{1}{18}\right)+\frac{1}{102}}=\frac{10}{\frac{1}{5}\cdot\frac{35}{306}+\frac{3}{306}}</imath> | |||
<imath>=\frac{10}{\frac{10}{306}}=\boxed{306}</imath>. | |||
=== Solution 6 === | |||
<center><asy> | |||
size(200); | |||
pathpen = black; pointpen = black +linewidth(0.6); pen s = fontsize(10); | |||
pair C=(0,0),A=(510,0),B=IP(circle(C,450),circle(A,425)); | |||
/* construct remaining points */ | |||
pair Da=IP(Circle(A,289),A--B),E=IP(Circle(C,324),B--C),Ea=IP(Circle(B,270),B--C); | |||
pair D=IP(Ea--(Ea+A-C),A--B),F=IP(Da--(Da+C-B),A--C),Fa=IP(E--(E+A-B),A--C); | |||
D(MP("A",A,s)--MP("B",B,N,s)--MP("C",C,s)--cycle); | |||
dot(MP("D",D,NE,s));dot(MP("E",E,NW,s));dot(MP("F",F,s));dot(MP("D'",Da,NE,s));dot(MP("E'",Ea,NW,s));dot(MP("F'",Fa,s)); | |||
D(D--Ea);D(Da--F);D(Fa--E); | |||
MP("450",(B+C)/2,NW);MP("425",(A+B)/2,NE);MP("510",(A+C)/2); | |||
/*P copied from above solution*/ | |||
pair P = IP(D--Ea,E--Fa); dot(MP("P",P,N)); | |||
</asy></center> <!-- Asymptote replacement for Image:1986_AIME-9.png by azjps --> | |||
Refer to the diagram above. Notice that because <imath>CE'PF</imath>, <imath>AF'PD</imath>, and <imath>BD'PE</imath> are parallelograms, <imath>\overline{DD'} = 425-d</imath>, <imath>\overline{EE'} = 450-d</imath>, and <imath>\overline{FF'} = 510-d</imath>. | |||
Let <imath>F'P = x</imath>. Then, because <imath>\triangle ABC \sim \triangle F'PF</imath>, <imath>\frac{AB}{AC}=\frac{F'P}{F'F}</imath>, so <imath>\frac{425}{510}=\frac{x}{510-d}</imath>. Simplifying the LHS and cross-multiplying, we have <imath>6x=2550-5d</imath>. From the same triangles, we can find that <imath>FP=\frac{18}{17}x</imath>. | |||
<imath>\triangle PEE'</imath> is also similar to <imath>\triangle F'PF</imath>. Since <imath>EF'=d</imath>, <imath>EP=d-x</imath>. We now have <imath>\frac{PE}{EE'}=\frac{F'P}{FP}</imath>, and <imath>\frac{d-x}{450-d}=\frac{17}{18}</imath>. Cross multiplying, we have <imath>18d-18x=450 \cdot 17-17d</imath>. Using the previous equation to substitute for <imath>x</imath>, we have: <cmath>18d-3\cdot2550+15d=450\cdot17-17d</cmath> This is a linear equation in one variable, and we can solve to get <imath>d=\boxed{306}</imath> | |||
*I did not show the multiplication in the last equation because most of it cancels out when solving. | |||
(Note: I chose <imath>F'P</imath> to be <imath>x</imath> only because that is what I had written when originally solving. The solution would work with other choices for <imath>x</imath>.) | |||
== Video Solution by Pi Academy == | |||
https://youtu.be/fHFD0TEfBnA?si=DRKVU_As7Rv0ou5D | |||
~ Pi Academy | |||
== See also == | == See also == | ||
{{AIME box|year=1986|num-b=8|num-a=10}} | {{AIME box|year=1986|num-b=8|num-a=10}} | ||
[[Category:Intermediate Geometry Problems]] | [[Category:Intermediate Geometry Problems]] | ||
{{MAA Notice}} | |||
Latest revision as of 14:12, 11 November 2025
Problem
In
,
,
, and
. An interior point
is then drawn, and segments are drawn through
parallel to the sides of the triangle. If these three segments are of an equal length
, find
.
Solution
Solution 1
![[asy] size(200); pathpen = black; pointpen = black +linewidth(0.6); pen s = fontsize(10); pair C=(0,0),A=(510,0),B=IP(circle(C,450),circle(A,425)); /* construct remaining points */ pair Da=IP(Circle(A,289),A--B),E=IP(Circle(C,324),B--C),Ea=IP(Circle(B,270),B--C); pair D=IP(Ea--(Ea+A-C),A--B),F=IP(Da--(Da+C-B),A--C),Fa=IP(E--(E+A-B),A--C); D(MP("A",A,s)--MP("B",B,N,s)--MP("C",C,s)--cycle); dot(MP("D",D,NE,s));dot(MP("E",E,NW,s));dot(MP("F",F,s));dot(MP("D'",Da,NE,s));dot(MP("E'",Ea,NW,s));dot(MP("F'",Fa,s)); D(D--Ea);D(Da--F);D(Fa--E); MP("450",(B+C)/2,NW);MP("425",(A+B)/2,NE);MP("510",(A+C)/2); /*P copied from above solution*/ pair P = IP(D--Ea,E--Fa); dot(MP("P",P,N)); [/asy]](http://latex.artofproblemsolving.com/8/e/1/8e19916c4ed37209e832673ba0274846bb4c4246.png)
Let the points at which the segments hit the triangle be called
as shown above. As a result of the lines being parallel, all three smaller triangles and the larger triangle are similar (
). The remaining three sections are parallelograms.
By similar triangles,
and
. Since
, we have
, so
.
Solution 2
Construct cevians
,
and
through
. Place masses of
on
,
and
respectively; then
has mass
.
Notice that
has mass
. On the other hand, by similar triangles,
. Hence by mass points we find that
Similarly, we obtain
Summing these three equations yields
Hence,
Solution 3
![[asy] size(200); pathpen = black; pointpen = black + linewidth(0.6); pen s = fontsize(10); // Define points pair C = (0,0), A = (510,0); pair B = IP(circle(C,450),circle(A,425)); // Construct remaining points pair Da = IP(circle(A,289),A--B); pair E = IP(circle(C,324),B--C); pair Ea = IP(circle(B,270),B--C); pair D = IP(Ea--(Ea+A-C),A--B); pair F = IP(Da--(Da+C-B),A--C); pair Fa = IP(E--(E+A-B),A--C); // Draw the main triangle draw(A--B--C--cycle); dot(MP("A",A,s)); dot(MP("B",B,N,s)); dot(MP("C",C,s)); // Mark and draw the other points dot(MP("D",D,NE,s)); dot(MP("E",E,NW,s)); dot(MP("F",F,s)); dot(MP("D'",Da,NE,s)); dot(MP("E'",Ea,NW,s)); dot(MP("F'",Fa,s)); // Draw connecting lines draw(D--Ea); draw(Da--F); draw(Fa--E); // Label distances label("450", (B+C)/2, NW); label("425", (A+B)/2, NE); label("510", (A+C)/2, S); // Additional point P pair P = IP(D--Ea, E--Fa); dot(MP("P",P,N)); [/asy]](http://latex.artofproblemsolving.com/0/8/a/08ae6b7affdbd9f7a37f66ddf918895508ad791c.png)
Let the points at which the segments hit the triangle be called
as shown above. As a result of the lines being parallel, all three smaller triangles and the larger triangle are similar (
). The remaining three sections are parallelograms.
Since
is a parallelogram, we find
, and similarly
. So
. Thus
. By the same logic,
.
Since
, we have the proportion:
Doing the same with
, we find that
. Now,
.
Solution 4
Define the points the same as above.
Let
,
,
,
,
and
The key theorem we apply here is that the ratio of the areas of 2 similar triangles is the ratio of a pair of corresponding sides squared.
Let the length of the segment be
and the area of the triangle be
, using the theorem, we get:
,
,
.
Adding all these together and using
we get
Using corresponding angles from parallel lines, it is easy to show that
; since
and
are parallelograms, it is easy to show that
Now we have the side length ratio, so we have the area ratio
. By symmetry, we have
and
Substituting these into our initial equation, we have
and the answer follows after some hideous computation.
Solution 5
Refer to the diagram in solution 2; let
,
, and
. Now, note that
,
, and
are similar, so through some similarities we find that
. Similarly, we find that
and
, so
. Now, again from similarity, it follows that
,
, and
, so adding these together, simplifying, and solving gives
.
Solution 6
![[asy] size(200); pathpen = black; pointpen = black +linewidth(0.6); pen s = fontsize(10); pair C=(0,0),A=(510,0),B=IP(circle(C,450),circle(A,425)); /* construct remaining points */ pair Da=IP(Circle(A,289),A--B),E=IP(Circle(C,324),B--C),Ea=IP(Circle(B,270),B--C); pair D=IP(Ea--(Ea+A-C),A--B),F=IP(Da--(Da+C-B),A--C),Fa=IP(E--(E+A-B),A--C); D(MP("A",A,s)--MP("B",B,N,s)--MP("C",C,s)--cycle); dot(MP("D",D,NE,s));dot(MP("E",E,NW,s));dot(MP("F",F,s));dot(MP("D'",Da,NE,s));dot(MP("E'",Ea,NW,s));dot(MP("F'",Fa,s)); D(D--Ea);D(Da--F);D(Fa--E); MP("450",(B+C)/2,NW);MP("425",(A+B)/2,NE);MP("510",(A+C)/2); /*P copied from above solution*/ pair P = IP(D--Ea,E--Fa); dot(MP("P",P,N)); [/asy]](http://latex.artofproblemsolving.com/8/e/1/8e19916c4ed37209e832673ba0274846bb4c4246.png)
Refer to the diagram above. Notice that because
,
, and
are parallelograms,
,
, and
.
Let
. Then, because
,
, so
. Simplifying the LHS and cross-multiplying, we have
. From the same triangles, we can find that
.
is also similar to
. Since
,
. We now have
, and
. Cross multiplying, we have
. Using the previous equation to substitute for
, we have:
This is a linear equation in one variable, and we can solve to get
- I did not show the multiplication in the last equation because most of it cancels out when solving.
(Note: I chose
to be
only because that is what I had written when originally solving. The solution would work with other choices for
.)
Video Solution by Pi Academy
https://youtu.be/fHFD0TEfBnA?si=DRKVU_As7Rv0ou5D
~ Pi Academy
See also
| 1986 AIME (Problems • Answer Key • Resources) | ||
| Preceded by Problem 8 |
Followed by Problem 10 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America.