Art of Problem Solving

2025 AMC 10A Problems/Problem 20: Difference between revisions

Nioronean (talk | contribs)
No edit summary
Tag: Manual revert
Wen liang (talk | contribs)
 
(91 intermediate revisions by 26 users not shown)
Line 1: Line 1:
A silo (right circular cylinder) with diameter 20 meters stands in a field. MacDonald is located 20 meters west and 15 meters south of the center of the silo. McGregor is located 20 meters east and <imath>g > 0</imath> meters south of the center of the silo. The light of sight between MacDonald and McGregor is tangent to the silo. The value of g can be written as <imath>\frac{a\sqrt{b}-c}{d}</imath>, where <imath>a,b,c,</imath> and <imath>d</imath> are positive integers, <imath>b</imath> is not divisible by the square of any prime, and <imath>d</imath> is relatively prime to the greatest common divisor of <imath>a</imath> and <imath>c</imath>. What is <imath>a+b+c+d</imath>?
==Problem==
A silo (right circular cylinder) with diameter 20 meters stands in a field. MacDonald is located 20 meters west and 15 meters south of the center of the silo. McGregor is located 20 meters east and <imath>g > 0</imath> meters south of the center of the silo. The line of sight between MacDonald and McGregor is tangent to the silo. The value of g can be written as <imath>\frac{a\sqrt{b}-c}{d}</imath>, where <imath>a,b,c,</imath> and <imath>d</imath> are positive integers, <imath>b</imath> is not divisible by the square of any prime, and <imath>d</imath> is relatively prime to the greatest common divisor of <imath>a</imath> and <imath>c</imath>. What is <imath>a+b+c+d</imath>?


<imath>\textbf{(A) } 118 \qquad\textbf{(B) } 119 \qquad\textbf{(C) } 120 \qquad\textbf{(D) } 121 \qquad\textbf{(E) } 122</imath>
<imath>\textbf{(A) } 119 \qquad\textbf{(B) } 120 \qquad\textbf{(C) } 121 \qquad\textbf{(D) } 122 \qquad\textbf{(E) } 123</imath>


=Solution 1=
==Solution 1==
<asy>
import olympiad;
size(340);
 
// numeric setup for reliable AoPS rendering
real R = 10;
pair O = (0,0);
pair B = (-20,0);
pair A = (-20,-15);
pair C = (20,0);
real g = 5.55; // approximate numeric version of (20√21−75)/3
pair D = (20,-g);
pair E = (2.30,-9.74);
pair F = intersectionpoint(A--(A+4*(D-A)), B--(B+4*(C-B)));
 
filldraw(circle(O,R), white, heavyblue);
 
draw(A--F, heavygreen);
draw(B--F);
draw(A--B--O--cycle);
draw(O--E);
draw((C+2*(C-D))--(C + 3*(D-C)), dashed);
 
dot(A); label("$A$", A, SW);
dot(B); label("$B$", B, NW);
dot(C); label("$C$", C, NE);
dot(D); label("$D$", D, SE);
dot(E); label("$E$", E, NE);
dot(O); label("$O$", O, N);
dot(F); label("$F$", F, S);
 
draw(rightanglemark(A,B,O,50));
 
label("$20$", midpoint(B--O), dir(90));
label("$15$", midpoint(A--B), W);
label("$25$", midpoint(A--O), SE);
label("$g$", (C+D)/2, W);
label(“?”, midpoint(A--F), SE);
 
currentpicture.fit();
</asy>
 
Let the silo center be <imath>O</imath>, let the point MacDonald is situated at be <imath>A</imath>, and let the point <imath>20</imath> meters west of the silo center be <imath>B</imath>. <imath>ABO</imath> is then a right triangle with side lengths <imath> 15, 20,</imath> and <imath>25</imath>.
 
 
Let the point <imath>20</imath> meters east of the silo center be <imath>C</imath>, and let the point McGregor is at be <imath>D</imath> with <imath>CD=g>0</imath>. Also let <imath>AD</imath> be tangent to circle <imath>O</imath> at <imath>E</imath>.
 
 
Extend <imath>BC</imath> and <imath>AD</imath> to meet at point <imath>F</imath>. This creates <imath>3</imath> similar triangles, <imath>\triangle ABF\sim \triangle DCF \sim \triangle OEF</imath>. Let the distance between point <imath>C</imath> and <imath>F</imath> be <imath>x</imath>. The similarity ratio between triangles <imath>ABF</imath> and <imath>DCF</imath> is then <imath> \frac{longer\;leg}{shorter\;leg} = \frac{40+x}{15} = \frac{x}{g}</imath>
 
 
This is currently unsolvable so we bring in triangle <imath>OEF</imath>. The hypotenuse of triangle <imath>OEF</imath> is <imath>OF=20+x</imath> and its shorter leg is the radius of the silo <imath>=10</imath>. We can then establish a second similarity relationship between triangles <imath>OEF</imath> and <imath>ABF</imath> with <imath>\frac{shorter\; leg}{hypotenuse}=\frac{10}{20+x}=\frac{15}{AF}</imath>
 
 
Now we find the hypotenuse of <imath>ABF</imath> in terms of <imath>x</imath> using the Pythagorean theorem. <imath>AF^2=15^2+(40+x)^2</imath>. Which simplifies to <imath>AF^2=225+1600+80x+x^2=1825+80x+x^2</imath>  So <imath>AF=\sqrt{x^2+80x+1825}</imath>
 
 
Plugging back in we get <imath>\frac{10}{20+x}=\frac{15}{\sqrt{x^2+80x+1825}}</imath>. Now we can begin to break this down by multiplying both sides by both denominators. <imath>10(\sqrt{x^2+80x+1825})=15(20+x)</imath> Dividing both sides by <imath>5</imath> then squaring yields, <imath>4x^2+320x+7300=9x^2+360x+3600</imath>  This furthermore simplifies to <imath>5x^2+40x-3700=0</imath> At which point we can divide off a <imath>5</imath> and then apply the quadratic formula on <imath>x^2+8x-740=0</imath> which we take the positive root of.
 
 
<cmath>x = \frac{-8+\sqrt{64+2960}}{2} = \frac{-8+\sqrt{3024}}{2} =\frac{-8+\sqrt{144 \cdot 21}}{2}.</cmath>
 
 
Simplifying yields that <imath>x=6\sqrt{21}-4</imath>
 
 
Then to solve for <imath>g</imath> we simply plug <imath>6\sqrt{21}-4</imath> back into the first similarity ratio to get <imath>\frac{36+6\sqrt{21}}{15}=\frac{6\sqrt{21}-4}{g}</imath>
 
 
Multiply both sides by <imath>15g</imath> and dividing by <imath>36+6\sqrt{21}</imath> will let us solve for <imath>g=\frac{15(6\sqrt{21}-4)}{36+6\sqrt{21}}</imath> and after rationalizing the denominator we get <imath>\frac{20\sqrt{21}-75}{3}</imath>. <imath>20+21+75+3=\boxed{\textbf{(A)}~119}</imath>
 
 
 
<imath>\sim</imath> Nioronean
~ happyfish0922 (minor edit regarding what was previously point T changed to point E)
~ Avs2010 (diagram)
 
~JerryZYang (minor edit in latex and style)
 
==Solution 2 (Coordinates)==
 
Let MacDonald's position be at <imath>(0,0)</imath>. Then, the center of the silo will be at <imath>(20,15)</imath> and McGregor will be at <imath>(40, 15-g)</imath>.
 
Let the line of sight between MacDonald and McGregor be represented by the line <imath>y=mx</imath>, where <imath>m=\frac{15-g}{40}</imath>. As the radius of the silo is <imath>10</imath>, we can construct the equation of a circle and get the system of equations: <cmath>y=mx</cmath> <cmath>(x-20)^2+(y-15)^2=100</cmath>
 
Substituting, we get: <cmath>(x-20)^2+(mx-15)^2=100</cmath> <cmath>x^2-40x+400+m^2x^2-30mx+225=100</cmath> <cmath>(m^2+1)x^2-(30m+40)x+525=0</cmath>
 
We want a value of <imath>m</imath> such that this equation has <imath>1</imath> solution, so we set the discriminant to be equal to <imath>0</imath>. <cmath>(30m+40)^2-4(m^2+1)(525)=0</cmath> <cmath>900m^2+2400m+1600-2100m^2-2100=0</cmath> <cmath>12m^2-24m+5=0</cmath> <cmath>m=\frac{24 \pm \sqrt{576-240}}{24}</cmath> <cmath>m=\frac{6 \pm \sqrt{21}}{6}</cmath>
 
The slope obviously has to be less than <imath>1</imath>, so we take the negative root <imath>\frac{6-\sqrt{21}}{6}</imath>.
 
Substituting back for <imath>m</imath> and solving for <imath>g</imath>, <cmath>\frac{15-g}{40}=\frac{6-\sqrt{21}}{6}</cmath> <cmath>15-g=\frac{20}{3}(6-\sqrt{21})</cmath> <cmath>g=\frac{20\sqrt{21}-75}{3}</cmath>
 
Finally, <imath>a=20</imath>, <imath>b=21</imath>, <imath>c=75</imath>, and <imath>d=3</imath>, summing up to a total of <imath>20+21+75+3=\boxed{\textbf{(A)}~119}</imath>
 
~megaboy6679 (I actually did this in the comp)
 
==Solution 3 (Trig)==
(I don't know how to make a diagram or latex very well oops)
 
Let the silo center be <imath>O</imath>, let the point MacDonald is situated at be <imath>A</imath>, and let the point <imath>15</imath> meters south of the silo center be <imath>B</imath>. <imath>ABO</imath> is then a right triangle with side lengths <imath> 15, 20, 25</imath>.
 
Also let the tangency point be <imath>E</imath>. Then, because a tangent line is defined as having a right angle to the radius <imath>OE</imath>, triangle <imath>AEO</imath> is also a right triangle with side lengths <imath>5\sqrt{21},10,25</imath> since we know <imath>AO</imath> is 25 from pythag on <imath>ABO</imath> and that <imath>OE</imath> is 10 because it's a radius, so <imath>AE</imath> follows from pythag on <imath>AEO</imath>.
 
Let the position McGregor is in be <imath>G</imath> and let the point that is both directly south of McGregor and directly east of MacDonald be <imath>F</imath>. (For reference, <imath>F</imath> is <imath>20</imath> meters east and <imath>15</imath> meters south of O, which is also <imath>40</imath> meters east of D and <imath>15-g</imath> meters south of <imath>G</imath>.)
 
Now, we can see that the triangle <imath>AFG</imath> is also a right triangle. Since <imath>G</imath> is on the line <imath>AE</imath> by definition and <imath>F</imath> is on line <imath>AB</imath> because they are all on the same horizontal line <imath>15</imath> meters south of O, <imath>\angle GAF=\angle EAB</imath>. This leads us to conclude that <imath>\tan{\angle GAF}=\frac{15-g}{40}=\tan{\angle EAB}</imath>.
 
From here, we can use tangent subtraction formula to find <imath>\tan(\angle EAB)</imath>.
 
We know that <imath>\tan(\angle OAB)=\frac{15}{20}=\frac34</imath> and that <imath>\tan(\angle OAE)=\frac{10}{5\sqrt{21}}\frac2{\sqrt{21}}</imath>. Since <imath>\angle EAB = \angle OAB - \angle OAE</imath>, we have that
 
<imath>\tan(\angle EAB)=\tan(\angle OAB - \angle OAE)=\frac{\tan(\angle OAB)-\tan(\angle OAE)}{1+\tan(\angle OAB)\tan(\angle OAE)}=\frac{\frac34-\frac2{\sqrt{21}}}{1+\frac6{4\sqrt{21}}}</imath>
 
Multiplying the top and bottom by <imath>4\sqrt{21}</imath>, this equals
 
<imath>\frac{3\sqrt{21}-8}{4\sqrt{21}+6}=\frac12\cdot\frac{3\sqrt{21}-8}{2\sqrt{21}+3}</imath> (factoring out <imath>\frac12</imath> is personal preference)
 
Now, rationalizing the denominator by multiplying the top and bottom by <imath>2\sqrt{21}-3</imath>, we get this equals
 
<imath>\frac12\cdot\frac{(3\sqrt{21}-8)\cdot(2\sqrt{21}-3)}{(2\sqrt{21}+3)\cdot(2\sqrt{21}-3)}=\frac12\cdot\frac{150-25\sqrt{21}}{75}=\frac{6-\sqrt{21}}6</imath>
 
Recalling that this implies <imath>\frac{15-g}{40}=\frac{6-\sqrt{21}}6</imath>, we get that <imath>g=\frac{20\sqrt{21}-75}{3}</imath>. <imath>20+21+75+3=\boxed{\textbf{(A)}~119}</imath>
 
~Ant_Eater
 
==Solution 4==
<asy>
import olympiad;
size(340);
 
// numeric setup for reliable AoPS rendering
real R = 10;
pair O = (0,0);
pair B = (-20,0);
pair A = (-20,-15);
pair C = (20,0);
real g = 5.55; // approximate numeric version of (20√21−75)/3
pair D = (20,-g);
pair E = (2.30,-9.74);
pair F = intersectionpoint(A--(A+4*(D-A)), B--(B+4*(C-B)));
 
filldraw(circle(O,R), white, heavyblue);
 
draw(A--F, heavygreen);
draw(B--F);
draw(A--B--O--cycle);
draw(O--E);
draw((C+2*(C-D))--(C + 3*(D-C)), dashed);
 
dot(A); label("$A$", A, SW);
dot(B); label("$B$", B, NW);
dot(C); label("$C$", C, NE);
dot(D); label("$D$", D, SE);
dot(E); label("$E$", E, NE);
dot(O); label("$O$", O, N);
dot(F); label("$F$", F, S);
 
draw(rightanglemark(A,B,O,50));
 
label("$20$", midpoint(B--O), dir(90));
label("$15$", midpoint(A--B), W);
label("$25$", midpoint(A--O), SE);
label("$g$", (C+D)/2, W);
 
currentpicture.fit();
</asy>
 
We use the point names given in Solution 1.
 
By Pythagorean Theorem (twice), we have <cmath>AE=\sqrt{AO^2-OE^2}=\sqrt{AB^2+BO^2-10^2}=\sqrt{525}=5\sqrt{21}.</cmath> Similarly, we find that <cmath>DE=\sqrt{DO^2-OE^2}=\sqrt{CD^2+CO^2-10^2}=\sqrt{300+g^2}.</cmath> Note that the altitude from <imath>D</imath> to <imath>AB</imath> (call the foot <imath>H</imath>) has length <imath>40</imath>. Also, <imath>AD=AE+DE=5\sqrt{21}+\sqrt{300+g^2}</imath> and <imath>DH=15-g</imath>. By Pythagoras on <imath>\triangle ADH</imath>, we have <cmath>\left(5\sqrt{21}+\sqrt{300+g^2}\right)^2=40^2+(15-g)^2.</cmath> Expanding, <cmath>525+10\sqrt{21}\cdot\sqrt{300+g^2}+300+g^2=1600+225-30g+g^2</cmath> and simplifying gives <cmath>10\sqrt{6300+21g^2}=1000-30g.</cmath> Dividing by <imath>10</imath> and squaring, <cmath>6300+21g^2=10000-600g+9g^2</cmath> and putting it in standard form, <cmath>0=12g^2+600g-3700.</cmath> Dividing by <imath>4</imath> and applying the quadratic formula, <cmath>g=\frac{-150\pm\sqrt{22500-4(3)(-925)}}{6}=\frac{-75\pm20\sqrt{21}}3.</cmath> From the answer form, we take the positive root, so <cmath>g=\frac{20\sqrt{21}-75}3.</cmath> Finally, we have <imath>20+21+75+3=\boxed{\text{(A) }119}.</imath>
 
~Waddles2010
(Minor calculation error fixed by hellokikki)
 
==Solution 5 (trig & similarity)==
 
Reference the diagram in Solution 1-
 
First, taking the Pythagorean Theorem on <imath>\Delta BOD</imath> and <imath>\Delta AOE</imath> gives <imath>AO = 25, AE = 5\sqrt{21}</imath>. By cosine angular addition, <imath>\cos{(\angle BOD + \angle AOE)} = \cos{\angle BOE} = \frac{8-3\sqrt21}{25}</imath>, so <imath>\cos{\angle EOC} = \frac{3\sqrt21-8}{25}</imath>.
 
Dropping the altitude from <imath>E</imath> to <imath>BC</imath> and labelling the foot <imath>P</imath>, we have that <imath>OP = 10 \cdot \frac{3\sqrt21-8}{25} = \frac{6\sqrt21-16}{5}</imath>, so the ratio of <imath>BP</imath> to <imath>BC</imath> is <imath>\frac{3\sqrt{21}+42}{100}</imath>. This is the same as the ratio of <imath>AE</imath> to <imath>AD</imath>, so <imath>AD = 5\sqrt{21} \cdot \frac{100}{3\sqrt{21}+42} = \frac{20}{3} \cdot (2\sqrt{21}-3)</imath>.
 
Dropping the altitude from <imath>D</imath> to <imath>AB</imath> and labelling the foot <imath>Q</imath>, <imath>AQ</imath> can be (tediously) computed to be <imath>\frac{20}{3} \cdot \sqrt{(2\sqrt{21}-3)^2-6^2} = \frac{20}{3} \cdot \sqrt{57-12\sqrt{21}} = \frac{20}{3} \cdot (6-\sqrt{21}) =\frac{120-20\sqrt{21}}{3}</imath>, and subtracting this from <imath>AB</imath> gives the length of <imath>BQ</imath> equivalent to <imath>CD</imath>, which is our desired length, so our answer is <imath>\frac{20\sqrt{21}-75}{3} \implies \boxed{\text{(A) }119}.</imath>
 
~ tiguhbabehwo
 
==Solution 6==
<asy>
import geometry;
unitsize(7);
pair _O = (0,0);
pair _B = (-20,0);
pair _A = (-20,-15);
pair _C = (20,0);
pair _D = (20, -(20sqrt(21)-75)/3);
pair _E = extension(_A, _D, _O, _O + rotate(90)*(_A - _D));
pair _F = (_A + _D)/2;
pair _G = (-20, _D.y);
 
draw(arc(_O, 10, 0, -180));
draw(_A -- _D -- _C -- _B -- _A ^^ _E -- _O -- (_A + _D)/2);
draw(_D -- _G, dashed);
dot(_A ^^ _B ^^ _C ^^ _D ^^ _E ^^ _F ^^ _G ^^ _O);
markrightangle(_A, _B, _O, 0.5*markangleradius());
label("$A$", _A, SW);
label("$B$", _B, NW);
label("$C$", _C, NE);
label("$D$", _D, SE);
label("$E$", _E, S);
label("$F$", _F, S);
label("$G$", _G, SE);
label("$O$", _O, N);
label("$20$", midpoint(_B -- _O), N);
label("$20$", midpoint(_C -- _O), N);
label("$15$", midpoint(_A -- _B), W);
label("$10$", (_E + 2_O)/3, SE);
label("$g$", midpoint(_C -- _D), E);
</asy>
 
<imath>F</imath> is the midpoint of <imath>AD</imath>, <imath>DG \perp AB</imath>. Notice that <imath>\triangle OEF \sim \triangle DGA</imath>, we have
<cmath>\frac{OE}{OF} = \frac{DG}{DA}</cmath>
Given the length of <imath>CD</imath> is <imath>g</imath>, <imath>OF</imath> is the midline, <imath>CD = BG</imath>, therefore <imath>GA = 15 - g</imath>, <imath>DA = \sqrt{40^2 + (15 - g)^2}</imath>, <imath>OF = \dfrac{15 + g}{2}</imath>
<cmath>\frac{OE}{OF} = \frac{DG}{GA}</cmath>
<cmath>\cfrac{10}{\cfrac{15 + g}{2}} = \frac{40}{\sqrt{40^2 + (15 - g)^2}}</cmath>
<cmath>2(15 + g) = \sqrt{40^2 + (15 - g)^2}</cmath>
<cmath>3g^2 + 150g - 925 = 0</cmath>
<cmath>g = \frac{-150 + \sqrt{22500 + 11100}}{6}</cmath>
<cmath>g = \frac{20\sqrt{21}-75}{3}</cmath>
The answer is <imath>20+21+75+3=\boxed{\textbf{(A)}~119}</imath>
 
~[https://artofproblemsolving.com/wiki/index.php/User:Reda_mandymath reda_mandymath]
 
==Video Solution by grogg007==
https://youtu.be/wTk9fhyXpNU
 
== Video Solution (In 5 Mins) ==
https://youtu.be/1Xc1blWnWSo?si=pBd85mIZwYjbOEdG ~ Pi Academy
 
==Video Solution by SpreadTheMathLove==
https://www.youtube.com/watch?v=dAeyV60Hu5c
 
==Video Solution==
https://youtu.be/gWSZeCKrOfU
 
~MK
 
==Video Solution by OmegaLearn==
https://youtu.be/JlGQWan5fRE
 
==See Also==
{{AMC10 box|year=2025|ab=A|num-b=19|num-a=21}}
* [[AMC 10]]
* [[AMC 10 Problems and Solutions]]
* [[Mathematics competitions]]
* [[Mathematics competition resources]]
{{MAA Notice}}

Latest revision as of 13:10, 11 November 2025

Problem

A silo (right circular cylinder) with diameter 20 meters stands in a field. MacDonald is located 20 meters west and 15 meters south of the center of the silo. McGregor is located 20 meters east and $g > 0$ meters south of the center of the silo. The line of sight between MacDonald and McGregor is tangent to the silo. The value of g can be written as $\frac{a\sqrt{b}-c}{d}$, where $a,b,c,$ and $d$ are positive integers, $b$ is not divisible by the square of any prime, and $d$ is relatively prime to the greatest common divisor of $a$ and $c$. What is $a+b+c+d$?

$\textbf{(A) } 119 \qquad\textbf{(B) } 120 \qquad\textbf{(C) } 121 \qquad\textbf{(D) } 122 \qquad\textbf{(E) } 123$

Solution 1

[asy] import olympiad; size(340);  // numeric setup for reliable AoPS rendering real R = 10; pair O = (0,0); pair B = (-20,0); pair A = (-20,-15); pair C = (20,0); real g = 5.55; // approximate numeric version of (20√21−75)/3 pair D = (20,-g); pair E = (2.30,-9.74); pair F = intersectionpoint(A--(A+4*(D-A)), B--(B+4*(C-B)));  filldraw(circle(O,R), white, heavyblue);  draw(A--F, heavygreen); draw(B--F); draw(A--B--O--cycle); draw(O--E); draw((C+2*(C-D))--(C + 3*(D-C)), dashed);  dot(A); label("$A$", A, SW); dot(B); label("$B$", B, NW); dot(C); label("$C$", C, NE); dot(D); label("$D$", D, SE); dot(E); label("$E$", E, NE); dot(O); label("$O$", O, N); dot(F); label("$F$", F, S);  draw(rightanglemark(A,B,O,50));  label("$20$", midpoint(B--O), dir(90)); label("$15$", midpoint(A--B), W); label("$25$", midpoint(A--O), SE); label("$g$", (C+D)/2, W); label(“?”, midpoint(A--F), SE);  currentpicture.fit(); [/asy]

Let the silo center be $O$, let the point MacDonald is situated at be $A$, and let the point $20$ meters west of the silo center be $B$. $ABO$ is then a right triangle with side lengths $15, 20,$ and $25$.


Let the point $20$ meters east of the silo center be $C$, and let the point McGregor is at be $D$ with $CD=g>0$. Also let $AD$ be tangent to circle $O$ at $E$.


Extend $BC$ and $AD$ to meet at point $F$. This creates $3$ similar triangles, $\triangle ABF\sim \triangle DCF \sim \triangle OEF$. Let the distance between point $C$ and $F$ be $x$. The similarity ratio between triangles $ABF$ and $DCF$ is then $\frac{longer\;leg}{shorter\;leg} = \frac{40+x}{15} = \frac{x}{g}$


This is currently unsolvable so we bring in triangle $OEF$. The hypotenuse of triangle $OEF$ is $OF=20+x$ and its shorter leg is the radius of the silo $=10$. We can then establish a second similarity relationship between triangles $OEF$ and $ABF$ with $\frac{shorter\; leg}{hypotenuse}=\frac{10}{20+x}=\frac{15}{AF}$


Now we find the hypotenuse of $ABF$ in terms of $x$ using the Pythagorean theorem. $AF^2=15^2+(40+x)^2$. Which simplifies to $AF^2=225+1600+80x+x^2=1825+80x+x^2$ So $AF=\sqrt{x^2+80x+1825}$


Plugging back in we get $\frac{10}{20+x}=\frac{15}{\sqrt{x^2+80x+1825}}$. Now we can begin to break this down by multiplying both sides by both denominators. $10(\sqrt{x^2+80x+1825})=15(20+x)$ Dividing both sides by $5$ then squaring yields, $4x^2+320x+7300=9x^2+360x+3600$ This furthermore simplifies to $5x^2+40x-3700=0$ At which point we can divide off a $5$ and then apply the quadratic formula on $x^2+8x-740=0$ which we take the positive root of.


\[x = \frac{-8+\sqrt{64+2960}}{2} = \frac{-8+\sqrt{3024}}{2} =\frac{-8+\sqrt{144 \cdot 21}}{2}.\]


Simplifying yields that $x=6\sqrt{21}-4$


Then to solve for $g$ we simply plug $6\sqrt{21}-4$ back into the first similarity ratio to get $\frac{36+6\sqrt{21}}{15}=\frac{6\sqrt{21}-4}{g}$


Multiply both sides by $15g$ and dividing by $36+6\sqrt{21}$ will let us solve for $g=\frac{15(6\sqrt{21}-4)}{36+6\sqrt{21}}$ and after rationalizing the denominator we get $\frac{20\sqrt{21}-75}{3}$. $20+21+75+3=\boxed{\textbf{(A)}~119}$


$\sim$ Nioronean ~ happyfish0922 (minor edit regarding what was previously point T changed to point E) ~ Avs2010 (diagram)

~JerryZYang (minor edit in latex and style)

Solution 2 (Coordinates)

Let MacDonald's position be at $(0,0)$. Then, the center of the silo will be at $(20,15)$ and McGregor will be at $(40, 15-g)$.

Let the line of sight between MacDonald and McGregor be represented by the line $y=mx$, where $m=\frac{15-g}{40}$. As the radius of the silo is $10$, we can construct the equation of a circle and get the system of equations: \[y=mx\] \[(x-20)^2+(y-15)^2=100\]

Substituting, we get: \[(x-20)^2+(mx-15)^2=100\] \[x^2-40x+400+m^2x^2-30mx+225=100\] \[(m^2+1)x^2-(30m+40)x+525=0\]

We want a value of $m$ such that this equation has $1$ solution, so we set the discriminant to be equal to $0$. \[(30m+40)^2-4(m^2+1)(525)=0\] \[900m^2+2400m+1600-2100m^2-2100=0\] \[12m^2-24m+5=0\] \[m=\frac{24 \pm \sqrt{576-240}}{24}\] \[m=\frac{6 \pm \sqrt{21}}{6}\]

The slope obviously has to be less than $1$, so we take the negative root $\frac{6-\sqrt{21}}{6}$.

Substituting back for $m$ and solving for $g$, \[\frac{15-g}{40}=\frac{6-\sqrt{21}}{6}\] \[15-g=\frac{20}{3}(6-\sqrt{21})\] \[g=\frac{20\sqrt{21}-75}{3}\]

Finally, $a=20$, $b=21$, $c=75$, and $d=3$, summing up to a total of $20+21+75+3=\boxed{\textbf{(A)}~119}$

~megaboy6679 (I actually did this in the comp)

Solution 3 (Trig)

(I don't know how to make a diagram or latex very well oops)

Let the silo center be $O$, let the point MacDonald is situated at be $A$, and let the point $15$ meters south of the silo center be $B$. $ABO$ is then a right triangle with side lengths $15, 20, 25$.

Also let the tangency point be $E$. Then, because a tangent line is defined as having a right angle to the radius $OE$, triangle $AEO$ is also a right triangle with side lengths $5\sqrt{21},10,25$ since we know $AO$ is 25 from pythag on $ABO$ and that $OE$ is 10 because it's a radius, so $AE$ follows from pythag on $AEO$.

Let the position McGregor is in be $G$ and let the point that is both directly south of McGregor and directly east of MacDonald be $F$. (For reference, $F$ is $20$ meters east and $15$ meters south of O, which is also $40$ meters east of D and $15-g$ meters south of $G$.)

Now, we can see that the triangle $AFG$ is also a right triangle. Since $G$ is on the line $AE$ by definition and $F$ is on line $AB$ because they are all on the same horizontal line $15$ meters south of O, $\angle GAF=\angle EAB$. This leads us to conclude that $\tan{\angle GAF}=\frac{15-g}{40}=\tan{\angle EAB}$.

From here, we can use tangent subtraction formula to find $\tan(\angle EAB)$.

We know that $\tan(\angle OAB)=\frac{15}{20}=\frac34$ and that $\tan(\angle OAE)=\frac{10}{5\sqrt{21}}\frac2{\sqrt{21}}$. Since $\angle EAB = \angle OAB - \angle OAE$, we have that

$\tan(\angle EAB)=\tan(\angle OAB - \angle OAE)=\frac{\tan(\angle OAB)-\tan(\angle OAE)}{1+\tan(\angle OAB)\tan(\angle OAE)}=\frac{\frac34-\frac2{\sqrt{21}}}{1+\frac6{4\sqrt{21}}}$

Multiplying the top and bottom by $4\sqrt{21}$, this equals

$\frac{3\sqrt{21}-8}{4\sqrt{21}+6}=\frac12\cdot\frac{3\sqrt{21}-8}{2\sqrt{21}+3}$ (factoring out $\frac12$ is personal preference)

Now, rationalizing the denominator by multiplying the top and bottom by $2\sqrt{21}-3$, we get this equals

$\frac12\cdot\frac{(3\sqrt{21}-8)\cdot(2\sqrt{21}-3)}{(2\sqrt{21}+3)\cdot(2\sqrt{21}-3)}=\frac12\cdot\frac{150-25\sqrt{21}}{75}=\frac{6-\sqrt{21}}6$

Recalling that this implies $\frac{15-g}{40}=\frac{6-\sqrt{21}}6$, we get that $g=\frac{20\sqrt{21}-75}{3}$. $20+21+75+3=\boxed{\textbf{(A)}~119}$

~Ant_Eater

Solution 4

[asy] import olympiad; size(340);  // numeric setup for reliable AoPS rendering real R = 10; pair O = (0,0); pair B = (-20,0); pair A = (-20,-15); pair C = (20,0); real g = 5.55; // approximate numeric version of (20√21−75)/3 pair D = (20,-g); pair E = (2.30,-9.74); pair F = intersectionpoint(A--(A+4*(D-A)), B--(B+4*(C-B)));  filldraw(circle(O,R), white, heavyblue);  draw(A--F, heavygreen); draw(B--F); draw(A--B--O--cycle); draw(O--E); draw((C+2*(C-D))--(C + 3*(D-C)), dashed);  dot(A); label("$A$", A, SW); dot(B); label("$B$", B, NW); dot(C); label("$C$", C, NE); dot(D); label("$D$", D, SE); dot(E); label("$E$", E, NE); dot(O); label("$O$", O, N); dot(F); label("$F$", F, S);  draw(rightanglemark(A,B,O,50));  label("$20$", midpoint(B--O), dir(90)); label("$15$", midpoint(A--B), W); label("$25$", midpoint(A--O), SE); label("$g$", (C+D)/2, W);  currentpicture.fit(); [/asy]

We use the point names given in Solution 1.

By Pythagorean Theorem (twice), we have \[AE=\sqrt{AO^2-OE^2}=\sqrt{AB^2+BO^2-10^2}=\sqrt{525}=5\sqrt{21}.\] Similarly, we find that \[DE=\sqrt{DO^2-OE^2}=\sqrt{CD^2+CO^2-10^2}=\sqrt{300+g^2}.\] Note that the altitude from $D$ to $AB$ (call the foot $H$) has length $40$. Also, $AD=AE+DE=5\sqrt{21}+\sqrt{300+g^2}$ and $DH=15-g$. By Pythagoras on $\triangle ADH$, we have \[\left(5\sqrt{21}+\sqrt{300+g^2}\right)^2=40^2+(15-g)^2.\] Expanding, \[525+10\sqrt{21}\cdot\sqrt{300+g^2}+300+g^2=1600+225-30g+g^2\] and simplifying gives \[10\sqrt{6300+21g^2}=1000-30g.\] Dividing by $10$ and squaring, \[6300+21g^2=10000-600g+9g^2\] and putting it in standard form, \[0=12g^2+600g-3700.\] Dividing by $4$ and applying the quadratic formula, \[g=\frac{-150\pm\sqrt{22500-4(3)(-925)}}{6}=\frac{-75\pm20\sqrt{21}}3.\] From the answer form, we take the positive root, so \[g=\frac{20\sqrt{21}-75}3.\] Finally, we have $20+21+75+3=\boxed{\text{(A) }119}.$

~Waddles2010 (Minor calculation error fixed by hellokikki)

Solution 5 (trig & similarity)

Reference the diagram in Solution 1-

First, taking the Pythagorean Theorem on $\Delta BOD$ and $\Delta AOE$ gives $AO = 25, AE = 5\sqrt{21}$. By cosine angular addition, $\cos{(\angle BOD + \angle AOE)} = \cos{\angle BOE} = \frac{8-3\sqrt21}{25}$, so $\cos{\angle EOC} = \frac{3\sqrt21-8}{25}$.

Dropping the altitude from $E$ to $BC$ and labelling the foot $P$, we have that $OP = 10 \cdot \frac{3\sqrt21-8}{25} = \frac{6\sqrt21-16}{5}$, so the ratio of $BP$ to $BC$ is $\frac{3\sqrt{21}+42}{100}$. This is the same as the ratio of $AE$ to $AD$, so $AD = 5\sqrt{21} \cdot \frac{100}{3\sqrt{21}+42} = \frac{20}{3} \cdot (2\sqrt{21}-3)$.

Dropping the altitude from $D$ to $AB$ and labelling the foot $Q$, $AQ$ can be (tediously) computed to be $\frac{20}{3} \cdot \sqrt{(2\sqrt{21}-3)^2-6^2} = \frac{20}{3} \cdot \sqrt{57-12\sqrt{21}} = \frac{20}{3} \cdot (6-\sqrt{21}) =\frac{120-20\sqrt{21}}{3}$, and subtracting this from $AB$ gives the length of $BQ$ equivalent to $CD$, which is our desired length, so our answer is $\frac{20\sqrt{21}-75}{3} \implies \boxed{\text{(A) }119}.$

~ tiguhbabehwo

Solution 6

[asy] import geometry; unitsize(7); pair _O = (0,0); pair _B = (-20,0); pair _A = (-20,-15); pair _C = (20,0); pair _D = (20, -(20sqrt(21)-75)/3); pair _E = extension(_A, _D, _O, _O + rotate(90)*(_A - _D)); pair _F = (_A + _D)/2; pair _G = (-20, _D.y);  draw(arc(_O, 10, 0, -180)); draw(_A -- _D -- _C -- _B -- _A ^^ _E -- _O -- (_A + _D)/2); draw(_D -- _G, dashed); dot(_A ^^ _B ^^ _C ^^ _D ^^ _E ^^ _F ^^ _G ^^ _O); markrightangle(_A, _B, _O, 0.5*markangleradius()); label("$A$", _A, SW); label("$B$", _B, NW); label("$C$", _C, NE); label("$D$", _D, SE); label("$E$", _E, S); label("$F$", _F, S); label("$G$", _G, SE); label("$O$", _O, N); label("$20$", midpoint(_B -- _O), N); label("$20$", midpoint(_C -- _O), N); label("$15$", midpoint(_A -- _B), W); label("$10$", (_E + 2_O)/3, SE); label("$g$", midpoint(_C -- _D), E); [/asy]

$F$ is the midpoint of $AD$, $DG \perp AB$. Notice that $\triangle OEF \sim \triangle DGA$, we have \[\frac{OE}{OF} = \frac{DG}{DA}\] Given the length of $CD$ is $g$, $OF$ is the midline, $CD = BG$, therefore $GA = 15 - g$, $DA = \sqrt{40^2 + (15 - g)^2}$, $OF = \dfrac{15 + g}{2}$ \[\frac{OE}{OF} = \frac{DG}{GA}\] \[\cfrac{10}{\cfrac{15 + g}{2}} = \frac{40}{\sqrt{40^2 + (15 - g)^2}}\] \[2(15 + g) = \sqrt{40^2 + (15 - g)^2}\] \[3g^2 + 150g - 925 = 0\] \[g = \frac{-150 + \sqrt{22500 + 11100}}{6}\] \[g = \frac{20\sqrt{21}-75}{3}\] The answer is $20+21+75+3=\boxed{\textbf{(A)}~119}$

~reda_mandymath

Video Solution by grogg007

https://youtu.be/wTk9fhyXpNU

Video Solution (In 5 Mins)

https://youtu.be/1Xc1blWnWSo?si=pBd85mIZwYjbOEdG ~ Pi Academy

Video Solution by SpreadTheMathLove

https://www.youtube.com/watch?v=dAeyV60Hu5c

Video Solution

https://youtu.be/gWSZeCKrOfU

~MK

Video Solution by OmegaLearn

https://youtu.be/JlGQWan5fRE

See Also

2025 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America.