Art of Problem Solving

2022 AMC 10B Problems/Problem 2: Difference between revisions

Calcsweat (talk | contribs)
 
(31 intermediate revisions by 11 users not shown)
Line 1: Line 1:
{{duplicate|[[2022 AMC 10B Problems/Problem 2|2022 AMC 10B #2]] and [[2022 AMC 12B Problems/Problem 2|2022 AMC 12B #2]]}}
==Solution Made Complicated==


==Problem==
We find that <imath>AP + DP = 5 = AD</imath>.
Because <imath>ABCD</imath> is a rhombus, we get that AD = AB = 5.
Notice that using Pythagorean Theorem, we have that <imath> AB^2 = AP^2 + BP^2 </imath>, which simplifies to <imath> 25 = AP^2 + 9 ==> AP = \sqrt{16} = 4 </imath>.


In rhombus <math>ABCD</math>, point <math>P</math> lies on segment <math>\overline{AD}</math> so that <math>\overline{BP}</math> <math>\perp</math> <math>\overline{AD}</math>, <math>AP = 3</math>, and <math>PD = 2</math>. What is the area of <math>ABCD</math>? (Note: The figure is not drawn to scale.)
Now, by spliting the rhombus into


<asy>
==Solution 2==
import olympiad;
size(180);
real r = 3, s = 5, t = sqrt(r*r+s*s);
defaultpen(linewidth(0.6) + fontsize(10));
pair A = (0,0), B = (r,s), C = (r+t,s), D = (t,0), P = (r,0);
draw(A--B--C--D--A^^B--P^^rightanglemark(B,P,D));
label("$A$",A,SW);
label("$B$", B, NW);
label("$C$",C,NE);
label("$D$",D,SE);
label("$P$",P,S);
</asy>


<math>\textbf{(A) }3\sqrt 5 \qquad
Notice that <imath>BC = AD = AP + PD = 3 + 2 = 5</imath>.
\textbf{(B) }10 \qquad
Now, because the question tells us <imath>ABCD</imath> is a rhombus, <imath>BC = AB = 5</imath>. Thus, by Pythagorean Theorem on <imath>APB</imath>, <imath>BP = 4</imath>.
\textbf{(C) }6\sqrt 5 \qquad
Therefore, <cmath>
\textbf{(D) }20\qquad
[ABCD] = AD \times BP = 5 \times 4 = \boxed{\text{D 20}}
\textbf{(E) }25</math>
</cmath>
 
~DUODUOLUO(First time using <imath>\LaTeX</imath>, may have some minor mistakes)
==Solution==
 
<asy>
pair A = (0,0);
label("$A$", A, SW);
pair B = (2.25,3);
label("$B$", B, NW);
pair C = (6,3);
label("$C$", C, NE);
pair D = (3.75,0);
label("$D$", D, SE);
pair P = (2.25,0);
label("$P$", P, S);
draw(A--B--C--D--cycle);
draw(P--B);
draw(rightanglemark(B,P,D));
</asy>
 
(Figure redrawn to scale.)
 
<math>AD = AP + PD = 3 + 2 = 5</math>.
 
<math>ABCD</math> is a rhombus, so <math>AB = AD = 5</math>.
 
<math>\bigtriangleup APB</math> is a 3-4-5 right triangle, so <math>BP = 4</math>.
 
The area of the rhombus <math>= bh = (AD)(BP) = 5 \cdot 4 = \boxed{\textbf{(D) }20}</math>.
 
~richiedelgado
 
==Solution 2 The Area Of A Triangles==
<asy>
pair A = (0,0);
label("$A$", A, SW);
pair B = (2.25,3);
label("$B$", B, NW);
pair C = (6,3);
label("$C$", C, NE);
pair D = (3.75,0);
label("$D$", D, SE);
pair P = (2.25,0);
label("$P$", P, S);
draw(A--B--C--D--cycle);
draw(D--B);
draw(B--P);
draw(rightanglemark(B,P,D));
</asy>
 
The diagram is the same as solution 1, just constrcuted a line at <math>BD</math>
 
When it comes to the sides of a rhombus, their opposite sides are congruent and parallel. Which means  <math>\angle ABD</math> ≅ <math>\angle BDC</math> by the Alternate Interior Angles Theorem.
 
By knowing these statements, we get <math>\triangle ABD</math> ≅ <math>\triangle BDC</math>.
 
Knowing that <math>AP=3</math> ; <math>AB=5</math>, then we would know that <math>BP=4</math> because <math>\triangle APB</math> is a 3-4-5 right triangle (as stated in solution 1).
 
We get the area of <math>\triangle ADB</math> as 10 because of the area of the triangle > <math>bh/2</math>.
 
Since we know that <math>\triangle ABD</math> ≅ <math>\triangle BDC</math> and that <math>ABCD=\triangle ABD + \triangle BDC</math>. That means we double the area of <math>\triangle ADB</math>, <math>10 \cdot 2 = \boxed{\textbf{(D) }20}</math>.
 
== See Also ==
 
{{AMC10 box|year=2022|ab=B|num-b=1|num-a=3}}
{{AMC12 box|year=2022|ab=B|num-b=1|num-a=3}}
{{MAA Notice}}

Latest revision as of 12:58, 10 November 2025

Solution Made Complicated

We find that $AP + DP = 5 = AD$. Because $ABCD$ is a rhombus, we get that AD = AB = 5. Notice that using Pythagorean Theorem, we have that $AB^2 = AP^2 + BP^2$, which simplifies to $25 = AP^2 + 9 ==> AP = \sqrt{16} = 4$.

Now, by spliting the rhombus into

Solution 2

Notice that $BC = AD = AP + PD = 3 + 2 = 5$. Now, because the question tells us $ABCD$ is a rhombus, $BC = AB = 5$. Thus, by Pythagorean Theorem on $APB$, $BP = 4$. Therefore, \[[ABCD] = AD \times BP = 5 \times 4 = \boxed{\text{D 20}}\] ~DUODUOLUO(First time using $\LaTeX$, may have some minor mistakes)