Art of Problem Solving

2023 AIME I Problems/Problem 3: Difference between revisions

Icematrix (talk | contribs)
mNo edit summary
Wiselion (talk | contribs)
 
(10 intermediate revisions by 5 users not shown)
Line 5: Line 5:
==Solution==
==Solution==


In this solution, let <b><math>\boldsymbol{n}</math>-line points</b> be the points where exactly <math>n</math> lines intersect. We wish to find the number of <math>2</math>-line points.
In this solution, let <b><imath>\boldsymbol{n}</imath>-line points</b> be the points where exactly <imath>n</imath> lines intersect. We wish to find the number of <imath>2</imath>-line points.


There are <math>\binom{40}{2}=780</math> pairs of lines. Among them:
There are <imath>\binom{40}{2}=780</imath> pairs of lines. Among them:


* The <math>3</math>-line points account for <math>3\cdot\binom32=9</math> pairs of lines.
* The <imath>3</imath>-line points account for <imath>3\cdot\binom32=9</imath> pairs of lines.


* The <math>4</math>-line points account for <math>4\cdot\binom42=24</math> pairs of lines.
* The <imath>4</imath>-line points account for <imath>4\cdot\binom42=24</imath> pairs of lines.


* The <math>5</math>-line points account for <math>5\cdot\binom52=50</math> pairs of lines.
* The <imath>5</imath>-line points account for <imath>5\cdot\binom52=50</imath> pairs of lines.


* The <math>6</math>-line points account for <math>6\cdot\binom62=90</math> pairs of lines.
* The <imath>6</imath>-line points account for <imath>6\cdot\binom62=90</imath> pairs of lines.


It follows that the <math>2</math>-line points account for <math>780-9-24-50-90=\boxed{607}</math> pairs of lines, where each pair intersect at a single point.  
It follows that the <imath>2</imath>-line points account for <imath>780-9-24-50-90=\boxed{607}</imath> pairs of lines, where each pair intersect at a single point.  


~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)


~MRENTHUSIASM
~MRENTHUSIASM
==Video Solution 1 by TheBeautyofMath==
 
Six Seven :)
 
==Video Solution by TheBeautyofMath==
https://youtu.be/3fC11X0LwV8
https://youtu.be/3fC11X0LwV8


Line 30: Line 33:
{{AIME box|year=2023|num-b=2|num-a=4|n=I}}
{{AIME box|year=2023|num-b=2|num-a=4|n=I}}
{{MAA Notice}}
{{MAA Notice}}
[[Category:Introductory Combinatorics Problems]]

Latest revision as of 13:26, 7 November 2025

Problem

A plane contains $40$ lines, no $2$ of which are parallel. Suppose that there are $3$ points where exactly $3$ lines intersect, $4$ points where exactly $4$ lines intersect, $5$ points where exactly $5$ lines intersect, $6$ points where exactly $6$ lines intersect, and no points where more than $6$ lines intersect. Find the number of points where exactly $2$ lines intersect.

Solution

In this solution, let $\boldsymbol{n}$-line points be the points where exactly $n$ lines intersect. We wish to find the number of $2$-line points.

There are $\binom{40}{2}=780$ pairs of lines. Among them:

  • The $3$-line points account for $3\cdot\binom32=9$ pairs of lines.
  • The $4$-line points account for $4\cdot\binom42=24$ pairs of lines.
  • The $5$-line points account for $5\cdot\binom52=50$ pairs of lines.
  • The $6$-line points account for $6\cdot\binom62=90$ pairs of lines.

It follows that the $2$-line points account for $780-9-24-50-90=\boxed{607}$ pairs of lines, where each pair intersect at a single point.

~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)

~MRENTHUSIASM

Six Seven :)

Video Solution by TheBeautyofMath

https://youtu.be/3fC11X0LwV8

~IceMatrix

See also

2023 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America.