Art of Problem Solving

2025 AMC 12A Problems/Problem 25: Difference between revisions

Tiankaizhang (talk | contribs)
Tiankaizhang (talk | contribs)
Undo revision 266770 by Tiankaizhang (talk)
Tag: Undo
Line 1: Line 1:
Polynomials <imath>P(x)</imath> and <imath>Q(x)</imath> each have degree <imath>3</imath> and leading coefficient <imath>1</imath>, and their roots are all elements of <imath>\{1,2,3,4,5\}</imath>. The function <imath>f(x) = \tfrac{P(x)}{Q(x)}</imath> has the property that there exist real numbers <imath>a < b < c < d</imath> such that the set of all real numbers <imath>x</imath> such that <imath>f(x) \leq 0</imath> consists of the closed interval <imath>[a,b]</imath> together with the open interval <imath>(c,d)</imath>. How many functions <imath>f(x)</imath> are possible?
Polynomials <imath>P(x)</imath> and <imath>Q(x)</imath> each have degree <imath>3</imath> and leading coefficient <imath>1</imath>, and their roots are all elements of <imath>\{1,2,3,4,5\}</imath>. The function <imath>f(x) = \tfrac{P(x)}{Q(x)}</imath> has the property that there exist real numbers <imath>a < b < c < d</imath> such that the set of all real numbers <imath>x</imath> such that <imath>f(x) \leq 0</imath> consists of the closed interval <imath>[a,b]</imath> together with the open interval <imath>(c,d)</imath>. How many functions <imath>f(x)</imath> are possible?


We are told that <imath>f(x) = \frac{P(x)}{Q(x)}</imath>, where <imath>P</imath> and <imath>Q</imath> are monic cubics with roots among <imath>\{1,2,3,4,5\}</imath>, and that
==Solution 1 ==
 
We begin by analyzing the sign chart. From the condition <imath>f(x) \le 0</imath> on <imath>[a,b] \cup (c,d)</imath> and <imath>f(x) > 0</imath> elsewhere, we deduce the following:
 
- <imath>a</imath> and <imath>b</imath> are zeros of <imath>f</imath>, since we transition from <imath>f>0</imath> to <imath>f\le0</imath> at <imath>a</imath>, and from <imath>f\le0</imath> to <imath>f>0</imath> at <imath>b</imath>.
- <imath>c</imath> and <imath>d</imath> are poles or holes of <imath>f</imath>, since on <imath>(c,d)</imath> we have <imath>f\le0</imath>, while immediately outside that interval <imath>f>0</imath>.
 
Thus, the sign pattern of <imath>f(x)</imath> is
<cmath>
<cmath>
\{x : f(x) \le 0\} = [a,b] \cup (c,d)
\begin{array}{cccccccccc}
& (-\infty, a) & a & (a,b) & b & (b,c) & c & (c,d) & d & (d,\infty) \\
f(x) & + & 0 & - & 0 & + & \text{pole} & - & \text{pole} & +
\end{array}
</cmath>
</cmath>
for some <imath>a < b < c < d</imath>.


---
---


### Step 1. Sign analysis
**Step 2. Structure of <imath>f(x)</imath>**
Since <imath>f(x)</imath> changes sign only at <imath>a,b,c,d</imath>, we must have
- zeros at <imath>a</imath> and <imath>b</imath>, 
- vertical asymptotes (poles) at <imath>c</imath> and <imath>d</imath>.


Thus the sign chart is:
According to the given conditions, we can express
<cmath>
f(x) = \frac{(x-p_1)(x-p_2)(x-p_3)}{(x-q_1)(x-q_2)(x-q_3)}.
</cmath>
Combining this with the sign analysis, we can write
<cmath>
f(x) = \frac{(x-a)(x-b)(x-p_3)}{(x-c)(x-d)(x-q_3)}.
</cmath>
We can separate this into two factors:
<cmath>
f(x) = \frac{(x-a)(x-b)}{(x-c)(x-d)} \cdot \frac{x-p_3}{x-q_3}.
</cmath>
Define
<cmath>
<cmath>
(+)\ a\ ()\ b\ (+)\ c\ ()\ d\ (+)
f_1(x) = \frac{(x-a)(x-b)}{(x-c)(x-d)}, \qquad f_2(x) = \frac{x-p_3}{x-q_3}.
</cmath>
</cmath>
so <imath>f(x)</imath> is positive outside <imath>[a,b]\cup(c,d)</imath> and nonpositive on those intervals.


---
---


### Step 2. General form
**Step 3. Determining <imath>p_3</imath> and <imath>q_3</imath>**
Because both <imath>P</imath> and <imath>Q</imath> are monic cubics,
 
By analyzing the sign changes of <imath>f_1(x)</imath>, we see that it already matches the required sign pattern for <imath>f(x)</imath>. Therefore, <imath>f_2(x)</imath> must remain positive on every interval; otherwise, it would introduce extra sign changes.
 
This means <imath>p_3 = q_3</imath>, since if <imath>p_3 \ne q_3</imath>, the factor <imath>\frac{x-p_3}{x-q_3}</imath> would change sign between <imath>p_3</imath> and <imath>q_3</imath>. 
Let <imath>p_3 = q_3 = t</imath>.
 
Furthermore:
- <imath>t</imath> cannot lie within <imath>[a,b] \cup (c,d)</imath>, since that would alter the set <imath>\{x : f(x) \le 0\}</imath>.
- <imath>t</imath> cannot be equal to <imath>a</imath> or <imath>b</imath>, since that would make those endpoints holes (discontinuities), contradicting that <imath>[a,b]</imath> is a *closed* interval.
 
Hence, <imath>t</imath> must either be equal to <imath>c</imath> or <imath>d</imath>, or lie outside <imath>[a,b] \cup (c,d)</imath>.
 
---
 
**Step 4. Possible values of <imath>a,b,c,d,t</imath>**
 
Given <imath>a<b<c<d</imath> and <imath>\{x : f(x) \le 0\} = [a,b] \cup (c,d)</imath>, we choose four distinct numbers from <imath>\{1,2,3,4,5\}</imath> for <imath>a,b,c,d</imath>:
<cmath>
\binom{5}{4} = 5.
</cmath>
The five possible cases are:
<cmath>
<cmath>
f(x) = \frac{(x-a)(x-b)(x-t)}{(x-c)(x-d)(x-t)}
[1,2]\cup(3,4), \quad [1,2]\cup(3,5), \quad [1,2]\cup(4,5), \quad [1,3]\cup(4,5), \quad [2,3]\cup(4,5).
</cmath>
</cmath>
for some <imath>t</imath> (possibly equal to one of the existing roots or poles). 
This ensures that <imath>\deg P = \deg Q = 3</imath> and the sign pattern is controlled by <imath>a,b,c,d</imath>.
To avoid adding extra sign changes, the extra factor <imath>\frac{x-t}{x-t}</imath> must not change sign, so <imath>t</imath> must either be one of the poles (<imath>c</imath> or <imath>d</imath>) or lie outside the intervals <imath>[a,b]\cup(c,d)</imath>.


---
---


### Step 3. Counting possibilities
**Case 1:** <imath>[1,2]\cup(3,4)</imath> 
We must choose four distinct numbers <imath>a<b<c<d</imath> from <imath>\{1,2,3,4,5\}</imath>:
<imath>t</imath> can be <imath>3</imath>, <imath>4</imath>, or <imath>5</imath>, giving 3 functions:
<cmath>
<cmath>
\binom{5}{4} = 5
f(x) = \frac{(x-1)(x-2)(x-3)}{(x-3)(x-4)(x-3)}, \quad
f(x) = \frac{(x-1)(x-2)(x-4)}{(x-3)(x-4)(x-4)}, \quad
f(x) = \frac{(x-1)(x-2)(x-5)}{(x-3)(x-4)(x-5)}.
</cmath>
</cmath>
giving these possible intervals:
 
**Case 2:** <imath>[1,2]\cup(3,5)</imath> 
<imath>t</imath> can be <imath>3</imath> or <imath>5</imath>, giving 2 functions:
<cmath>
<cmath>
[1,2]\cup(3,4),\ [1,2]\cup(3,5),\ [1,2]\cup(4,5),\ [1,3]\cup(4,5),\ [2,3]\cup(4,5).
f(x) = \frac{(x-1)(x-2)(x-3)}{(x-3)(x-5)(x-3)}, \quad
f(x) = \frac{(x-1)(x-2)(x-5)}{(x-3)(x-5)(x-5)}.
</cmath>
</cmath>


Now count possible <imath>t</imath> for each:
**Case 3:** <imath>[1,2]\cup(4,5)</imath> 
<imath>t</imath> can be <imath>3</imath>, <imath>4</imath>, or <imath>5</imath>, giving 3 functions:
<cmath>
f(x) = \frac{(x-1)(x-2)(x-3)}{(x-4)(x-5)(x-3)}, \quad
f(x) = \frac{(x-1)(x-2)(x-4)}{(x-4)(x-5)(x-4)}, \quad
f(x) = \frac{(x-1)(x-2)(x-5)}{(x-4)(x-5)(x-5)}.
</cmath>


| Case | <imath>[a,b]\cup(c,d)</imath> | Possible <imath>t</imath> | Count |
**Case 4:** <imath>[1,3]\cup(4,5)</imath>
|------|-------------------|---------------|--------|
<imath>t</imath> can be <imath>4</imath> or <imath>5</imath>, giving 2 functions:
| 1 | <imath>[1,2]\cup(3,4)</imath> | <imath>3,4,5</imath> | 3 |
<cmath>
| 2 | <imath>[1,2]\cup(3,5)</imath> | <imath>3,5</imath> | 2 |
f(x) = \frac{(x-1)(x-3)(x-4)}{(x-4)(x-5)(x-4)}, \quad
| 3 | <imath>[1,2]\cup(4,5)</imath> | <imath>3,4,5</imath> | 3 |
f(x) = \frac{(x-1)(x-3)(x-5)}{(x-4)(x-5)(x-5)}.
| 4 | <imath>[1,3]\cup(4,5)</imath> | <imath>4,5</imath> | 2 |
</cmath>
| 5 | <imath>[2,3]\cup(4,5)</imath> | <imath>1,4,5</imath> | 3 |


Total possibilities:
**Case 5:** <imath>[2,3]\cup(4,5)</imath> 
<imath>t</imath> can be <imath>1</imath>, <imath>4</imath>, or <imath>5</imath>, giving 3 functions:
<cmath>
<cmath>
3 + 2 + 3 + 2 + 3 = 13.
f(x) = \frac{(x-2)(x-3)(x-1)}{(x-4)(x-5)(x-1)}, \quad
f(x) = \frac{(x-2)(x-3)(x-4)}{(x-4)(x-5)(x-4)}, \quad
f(x) = \frac{(x-2)(x-3)(x-5)}{(x-4)(x-5)(x-5)}.
</cmath>
</cmath>


---
---


<imath>\boxed{13}</imath> possible functions <imath>f(x)</imath>, corresponding to answer choice <imath>\boxed{E}</imath>.
**Step 5. Final Answer**
 
Summing all possible cases:
<cmath>
3 + 2 + 3 + 2 + 3 = 13.
</cmath>
Thus, there are <imath>\boxed{13}</imath> possible functions <imath>f(x)</imath>, corresponding to choice <imath>\boxed{E}</imath>.
 
-Victor Zhang


==Video Solution 1 by OmegaLearn==
==Video Solution 1 by OmegaLearn==
https://youtu.be/SPbTyq3Dz_0
https://youtu.be/SPbTyq3Dz_0

Revision as of 02:27, 7 November 2025

Polynomials $P(x)$ and $Q(x)$ each have degree $3$ and leading coefficient $1$, and their roots are all elements of $\{1,2,3,4,5\}$. The function $f(x) = \tfrac{P(x)}{Q(x)}$ has the property that there exist real numbers $a < b < c < d$ such that the set of all real numbers $x$ such that $f(x) \leq 0$ consists of the closed interval $[a,b]$ together with the open interval $(c,d)$. How many functions $f(x)$ are possible?

Solution 1

We begin by analyzing the sign chart. From the condition $f(x) \le 0$ on $[a,b] \cup (c,d)$ and $f(x) > 0$ elsewhere, we deduce the following:

- $a$ and $b$ are zeros of $f$, since we transition from $f>0$ to $f\le0$ at $a$, and from $f\le0$ to $f>0$ at $b$. - $c$ and $d$ are poles or holes of $f$, since on $(c,d)$ we have $f\le0$, while immediately outside that interval $f>0$.

Thus, the sign pattern of $f(x)$ is \[\begin{array}{cccccccccc}  & (-\infty, a) & a & (a,b) & b & (b,c) & c & (c,d) & d & (d,\infty) \\ f(x) & + & 0 & - & 0 & + & \text{pole} & - & \text{pole} & + \end{array}\]

---

    • Step 2. Structure of $f(x)$**

According to the given conditions, we can express \[f(x) = \frac{(x-p_1)(x-p_2)(x-p_3)}{(x-q_1)(x-q_2)(x-q_3)}.\] Combining this with the sign analysis, we can write \[f(x) = \frac{(x-a)(x-b)(x-p_3)}{(x-c)(x-d)(x-q_3)}.\] We can separate this into two factors: \[f(x) = \frac{(x-a)(x-b)}{(x-c)(x-d)} \cdot \frac{x-p_3}{x-q_3}.\] Define \[f_1(x) = \frac{(x-a)(x-b)}{(x-c)(x-d)}, \qquad f_2(x) = \frac{x-p_3}{x-q_3}.\]

---

    • Step 3. Determining $p_3$ and $q_3$**

By analyzing the sign changes of $f_1(x)$, we see that it already matches the required sign pattern for $f(x)$. Therefore, $f_2(x)$ must remain positive on every interval; otherwise, it would introduce extra sign changes.

This means $p_3 = q_3$, since if $p_3 \ne q_3$, the factor $\frac{x-p_3}{x-q_3}$ would change sign between $p_3$ and $q_3$. Let $p_3 = q_3 = t$.

Furthermore: - $t$ cannot lie within $[a,b] \cup (c,d)$, since that would alter the set $\{x : f(x) \le 0\}$. - $t$ cannot be equal to $a$ or $b$, since that would make those endpoints holes (discontinuities), contradicting that $[a,b]$ is a *closed* interval.

Hence, $t$ must either be equal to $c$ or $d$, or lie outside $[a,b] \cup (c,d)$.

---

    • Step 4. Possible values of $a,b,c,d,t$**

Given $a<b<c<d$ and $\{x : f(x) \le 0\} = [a,b] \cup (c,d)$, we choose four distinct numbers from $\{1,2,3,4,5\}$ for $a,b,c,d$: \[\binom{5}{4} = 5.\] The five possible cases are: \[[1,2]\cup(3,4), \quad [1,2]\cup(3,5), \quad [1,2]\cup(4,5), \quad [1,3]\cup(4,5), \quad [2,3]\cup(4,5).\]

---

    • Case 1:** $[1,2]\cup(3,4)$

$t$ can be $3$, $4$, or $5$, giving 3 functions: \[f(x) = \frac{(x-1)(x-2)(x-3)}{(x-3)(x-4)(x-3)}, \quad f(x) = \frac{(x-1)(x-2)(x-4)}{(x-3)(x-4)(x-4)}, \quad f(x) = \frac{(x-1)(x-2)(x-5)}{(x-3)(x-4)(x-5)}.\]

    • Case 2:** $[1,2]\cup(3,5)$

$t$ can be $3$ or $5$, giving 2 functions: \[f(x) = \frac{(x-1)(x-2)(x-3)}{(x-3)(x-5)(x-3)}, \quad f(x) = \frac{(x-1)(x-2)(x-5)}{(x-3)(x-5)(x-5)}.\]

    • Case 3:** $[1,2]\cup(4,5)$

$t$ can be $3$, $4$, or $5$, giving 3 functions: \[f(x) = \frac{(x-1)(x-2)(x-3)}{(x-4)(x-5)(x-3)}, \quad f(x) = \frac{(x-1)(x-2)(x-4)}{(x-4)(x-5)(x-4)}, \quad f(x) = \frac{(x-1)(x-2)(x-5)}{(x-4)(x-5)(x-5)}.\]

    • Case 4:** $[1,3]\cup(4,5)$

$t$ can be $4$ or $5$, giving 2 functions: \[f(x) = \frac{(x-1)(x-3)(x-4)}{(x-4)(x-5)(x-4)}, \quad f(x) = \frac{(x-1)(x-3)(x-5)}{(x-4)(x-5)(x-5)}.\]

    • Case 5:** $[2,3]\cup(4,5)$

$t$ can be $1$, $4$, or $5$, giving 3 functions: \[f(x) = \frac{(x-2)(x-3)(x-1)}{(x-4)(x-5)(x-1)}, \quad f(x) = \frac{(x-2)(x-3)(x-4)}{(x-4)(x-5)(x-4)}, \quad f(x) = \frac{(x-2)(x-3)(x-5)}{(x-4)(x-5)(x-5)}.\]

---

    • Step 5. Final Answer**

Summing all possible cases: \[3 + 2 + 3 + 2 + 3 = 13.\] Thus, there are $\boxed{13}$ possible functions $f(x)$, corresponding to choice $\boxed{E}$.

-Victor Zhang

Video Solution 1 by OmegaLearn

https://youtu.be/SPbTyq3Dz_0