Art of Problem Solving

2025 AMC 12A Problems/Problem 25: Difference between revisions

Tiankaizhang (talk | contribs)
Tiankaizhang (talk | contribs)
Line 1: Line 1:
Polynomials <imath>P(x)</imath> and <imath>Q(x)</imath> each have degree <imath>3</imath> and leading coefficient <imath>1</imath>, and their roots are all elements of <imath>\{1,2,3,4,5\}</imath>. The function <imath>f(x) = \tfrac{P(x)}{Q(x)}</imath> has the property that there exist real numbers <imath>a < b < c < d</imath> such that the set of all real numbers <imath>x</imath> such that <imath>f(x) \leq 0</imath> consists of the closed interval <imath>[a,b]</imath> together with the open interval <imath>(c,d)</imath>. How many functions <imath>f(x)</imath> are possible?
Polynomials <imath>P(x)</imath> and <imath>Q(x)</imath> each have degree <imath>3</imath> and leading coefficient <imath>1</imath>, and their roots are all elements of <imath>\{1,2,3,4,5\}</imath>. The function <imath>f(x) = \tfrac{P(x)}{Q(x)}</imath> has the property that there exist real numbers <imath>a < b < c < d</imath> such that the set of all real numbers <imath>x</imath> such that <imath>f(x) \leq 0</imath> consists of the closed interval <imath>[a,b]</imath> together with the open interval <imath>(c,d)</imath>. How many functions <imath>f(x)</imath> are possible?


==Solution 1 ==
We are told that <imath>f(x) = \frac{P(x)}{Q(x)}</imath>, where <imath>P</imath> and <imath>Q</imath> are monic cubics with roots among <imath>\{1,2,3,4,5\}</imath>, and that
 
We begin by analyzing the sign chart. From the condition <imath>f(x) \le 0</imath> on <imath>[a,b] \cup (c,d)</imath> and <imath>f(x) > 0</imath> elsewhere, we deduce the following:
 
- <imath>a</imath> and <imath>b</imath> are zeros of <imath>f</imath>, since we transition from <imath>f>0</imath> to <imath>f\le0</imath> at <imath>a</imath>, and from <imath>f\le0</imath> to <imath>f>0</imath> at <imath>b</imath>.
- <imath>c</imath> and <imath>d</imath> are poles or holes of <imath>f</imath>, since on <imath>(c,d)</imath> we have <imath>f\le0</imath>, while immediately outside that interval <imath>f>0</imath>.
 
Thus, the sign pattern of <imath>f(x)</imath> is
<cmath>
<cmath>
\begin{array}{cccccccccc}
\{x : f(x) \le 0\} = [a,b] \cup (c,d)
& (-\infty, a) & a & (a,b) & b & (b,c) & c & (c,d) & d & (d,\infty) \\
f(x) & + & 0 & - & 0 & + & \text{pole} & - & \text{pole} & +
\end{array}
</cmath>
</cmath>
for some <imath>a < b < c < d</imath>.


---
---


**Step 2. Structure of <imath>f(x)</imath>**
### Step 1. Sign analysis
Since <imath>f(x)</imath> changes sign only at <imath>a,b,c,d</imath>, we must have
- zeros at <imath>a</imath> and <imath>b</imath>, 
- vertical asymptotes (poles) at <imath>c</imath> and <imath>d</imath>.


According to the given conditions, we can express
Thus the sign chart is:
<cmath>
f(x) = \frac{(x-p_1)(x-p_2)(x-p_3)}{(x-q_1)(x-q_2)(x-q_3)}.
</cmath>
Combining this with the sign analysis, we can write
<cmath>
f(x) = \frac{(x-a)(x-b)(x-p_3)}{(x-c)(x-d)(x-q_3)}.
</cmath>
We can separate this into two factors:
<cmath>
f(x) = \frac{(x-a)(x-b)}{(x-c)(x-d)} \cdot \frac{x-p_3}{x-q_3}.
</cmath>
Define
<cmath>
<cmath>
f_1(x) = \frac{(x-a)(x-b)}{(x-c)(x-d)}, \qquad f_2(x) = \frac{x-p_3}{x-q_3}.
(+)\ a\ ()\ b\ (+)\ c\ ()\ d\ (+)
</cmath>
</cmath>
so <imath>f(x)</imath> is positive outside <imath>[a,b]\cup(c,d)</imath> and nonpositive on those intervals.


---
---


**Step 3. Determining <imath>p_3</imath> and <imath>q_3</imath>**
### Step 2. General form
 
Because both <imath>P</imath> and <imath>Q</imath> are monic cubics,
By analyzing the sign changes of <imath>f_1(x)</imath>, we see that it already matches the required sign pattern for <imath>f(x)</imath>. Therefore, <imath>f_2(x)</imath> must remain positive on every interval; otherwise, it would introduce extra sign changes.
 
This means <imath>p_3 = q_3</imath>, since if <imath>p_3 \ne q_3</imath>, the factor <imath>\frac{x-p_3}{x-q_3}</imath> would change sign between <imath>p_3</imath> and <imath>q_3</imath>. 
Let <imath>p_3 = q_3 = t</imath>.
 
Furthermore:
- <imath>t</imath> cannot lie within <imath>[a,b] \cup (c,d)</imath>, since that would alter the set <imath>\{x : f(x) \le 0\}</imath>.
- <imath>t</imath> cannot be equal to <imath>a</imath> or <imath>b</imath>, since that would make those endpoints holes (discontinuities), contradicting that <imath>[a,b]</imath> is a *closed* interval.
 
Hence, <imath>t</imath> must either be equal to <imath>c</imath> or <imath>d</imath>, or lie outside <imath>[a,b] \cup (c,d)</imath>.
 
---
 
**Step 4. Possible values of <imath>a,b,c,d,t</imath>**
 
Given <imath>a<b<c<d</imath> and <imath>\{x : f(x) \le 0\} = [a,b] \cup (c,d)</imath>, we choose four distinct numbers from <imath>\{1,2,3,4,5\}</imath> for <imath>a,b,c,d</imath>:
<cmath>
<cmath>
\binom{5}{4} = 5.
f(x) = \frac{(x-a)(x-b)(x-t)}{(x-c)(x-d)(x-t)}
</cmath>
The five possible cases are:
<cmath>
[1,2]\cup(3,4), \quad [1,2]\cup(3,5), \quad [1,2]\cup(4,5), \quad [1,3]\cup(4,5), \quad [2,3]\cup(4,5).
</cmath>
</cmath>
for some <imath>t</imath> (possibly equal to one of the existing roots or poles). 
This ensures that <imath>\deg P = \deg Q = 3</imath> and the sign pattern is controlled by <imath>a,b,c,d</imath>.
To avoid adding extra sign changes, the extra factor <imath>\frac{x-t}{x-t}</imath> must not change sign, so <imath>t</imath> must either be one of the poles (<imath>c</imath> or <imath>d</imath>) or lie outside the intervals <imath>[a,b]\cup(c,d)</imath>.


---
---


**Case 1:** <imath>[1,2]\cup(3,4)</imath> 
### Step 3. Counting possibilities
<imath>t</imath> can be <imath>3</imath>, <imath>4</imath>, or <imath>5</imath>, giving 3 functions:
We must choose four distinct numbers <imath>a<b<c<d</imath> from <imath>\{1,2,3,4,5\}</imath>:
<cmath>
<cmath>
f(x) = \frac{(x-1)(x-2)(x-3)}{(x-3)(x-4)(x-3)}, \quad
\binom{5}{4} = 5
f(x) = \frac{(x-1)(x-2)(x-4)}{(x-3)(x-4)(x-4)}, \quad
f(x) = \frac{(x-1)(x-2)(x-5)}{(x-3)(x-4)(x-5)}.
</cmath>
</cmath>
 
giving these possible intervals:
**Case 2:** <imath>[1,2]\cup(3,5)</imath> 
<imath>t</imath> can be <imath>3</imath> or <imath>5</imath>, giving 2 functions:
<cmath>
<cmath>
f(x) = \frac{(x-1)(x-2)(x-3)}{(x-3)(x-5)(x-3)}, \quad
[1,2]\cup(3,4),\ [1,2]\cup(3,5),\ [1,2]\cup(4,5),\ [1,3]\cup(4,5),\ [2,3]\cup(4,5).
f(x) = \frac{(x-1)(x-2)(x-5)}{(x-3)(x-5)(x-5)}.
</cmath>
</cmath>


**Case 3:** <imath>[1,2]\cup(4,5)</imath> 
Now count possible <imath>t</imath> for each:
<imath>t</imath> can be <imath>3</imath>, <imath>4</imath>, or <imath>5</imath>, giving 3 functions:
<cmath>
f(x) = \frac{(x-1)(x-2)(x-3)}{(x-4)(x-5)(x-3)}, \quad
f(x) = \frac{(x-1)(x-2)(x-4)}{(x-4)(x-5)(x-4)}, \quad
f(x) = \frac{(x-1)(x-2)(x-5)}{(x-4)(x-5)(x-5)}.
</cmath>


**Case 4:** <imath>[1,3]\cup(4,5)</imath>
| Case | <imath>[a,b]\cup(c,d)</imath> | Possible <imath>t</imath> | Count |
<imath>t</imath> can be <imath>4</imath> or <imath>5</imath>, giving 2 functions:
|------|-------------------|---------------|--------|
<cmath>
| 1 | <imath>[1,2]\cup(3,4)</imath> | <imath>3,4,5</imath> | 3 |
f(x) = \frac{(x-1)(x-3)(x-4)}{(x-4)(x-5)(x-4)}, \quad
| 2 | <imath>[1,2]\cup(3,5)</imath> | <imath>3,5</imath> | 2 |
f(x) = \frac{(x-1)(x-3)(x-5)}{(x-4)(x-5)(x-5)}.
| 3 | <imath>[1,2]\cup(4,5)</imath> | <imath>3,4,5</imath> | 3 |
</cmath>
| 4 | <imath>[1,3]\cup(4,5)</imath> | <imath>4,5</imath> | 2 |
| 5 | <imath>[2,3]\cup(4,5)</imath> | <imath>1,4,5</imath> | 3 |


**Case 5:** <imath>[2,3]\cup(4,5)</imath> 
Total possibilities:
<imath>t</imath> can be <imath>1</imath>, <imath>4</imath>, or <imath>5</imath>, giving 3 functions:
<cmath>
<cmath>
f(x) = \frac{(x-2)(x-3)(x-1)}{(x-4)(x-5)(x-1)}, \quad
3 + 2 + 3 + 2 + 3 = 13.
f(x) = \frac{(x-2)(x-3)(x-4)}{(x-4)(x-5)(x-4)}, \quad
f(x) = \frac{(x-2)(x-3)(x-5)}{(x-4)(x-5)(x-5)}.
</cmath>
</cmath>


---
---


**Step 5. Final Answer**
<imath>\boxed{13}</imath> possible functions <imath>f(x)</imath>, corresponding to answer choice <imath>\boxed{E}</imath>.
 
Summing all possible cases:
<cmath>
3 + 2 + 3 + 2 + 3 = 13.
</cmath>
Thus, there are <imath>\boxed{13}</imath> possible functions <imath>f(x)</imath>, corresponding to choice <imath>\boxed{E}</imath>.
 
-Victor Zhang


==Video Solution 1 by OmegaLearn==
==Video Solution 1 by OmegaLearn==
https://youtu.be/SPbTyq3Dz_0
https://youtu.be/SPbTyq3Dz_0

Revision as of 02:27, 7 November 2025

Polynomials $P(x)$ and $Q(x)$ each have degree $3$ and leading coefficient $1$, and their roots are all elements of $\{1,2,3,4,5\}$. The function $f(x) = \tfrac{P(x)}{Q(x)}$ has the property that there exist real numbers $a < b < c < d$ such that the set of all real numbers $x$ such that $f(x) \leq 0$ consists of the closed interval $[a,b]$ together with the open interval $(c,d)$. How many functions $f(x)$ are possible?

We are told that $f(x) = \frac{P(x)}{Q(x)}$, where $P$ and $Q$ are monic cubics with roots among $\{1,2,3,4,5\}$, and that \[\{x : f(x) \le 0\} = [a,b] \cup (c,d)\] for some $a < b < c < d$.

---

      1. Step 1. Sign analysis

Since $f(x)$ changes sign only at $a,b,c,d$, we must have - zeros at $a$ and $b$, - vertical asymptotes (poles) at $c$ and $d$.

Thus the sign chart is:

\[(+)\ a\ (−)\ b\ (+)\ c\ (−)\ d\ (+)\] (Error compiling LaTeX. Unknown error_msg)

so $f(x)$ is positive outside $[a,b]\cup(c,d)$ and nonpositive on those intervals.

---

      1. Step 2. General form

Because both $P$ and $Q$ are monic cubics, \[f(x) = \frac{(x-a)(x-b)(x-t)}{(x-c)(x-d)(x-t)}\] for some $t$ (possibly equal to one of the existing roots or poles). This ensures that $\deg P = \deg Q = 3$ and the sign pattern is controlled by $a,b,c,d$.

To avoid adding extra sign changes, the extra factor $\frac{x-t}{x-t}$ must not change sign, so $t$ must either be one of the poles ($c$ or $d$) or lie outside the intervals $[a,b]\cup(c,d)$.

---

      1. Step 3. Counting possibilities

We must choose four distinct numbers $a<b<c<d$ from $\{1,2,3,4,5\}$: \[\binom{5}{4} = 5\] giving these possible intervals: \[[1,2]\cup(3,4),\ [1,2]\cup(3,5),\ [1,2]\cup(4,5),\ [1,3]\cup(4,5),\ [2,3]\cup(4,5).\]

Now count possible $t$ for each:

| Case | $[a,b]\cup(c,d)$ | Possible $t$ | Count | |------|-------------------|---------------|--------| | 1 | $[1,2]\cup(3,4)$ | $3,4,5$ | 3 | | 2 | $[1,2]\cup(3,5)$ | $3,5$ | 2 | | 3 | $[1,2]\cup(4,5)$ | $3,4,5$ | 3 | | 4 | $[1,3]\cup(4,5)$ | $4,5$ | 2 | | 5 | $[2,3]\cup(4,5)$ | $1,4,5$ | 3 |

Total possibilities: \[3 + 2 + 3 + 2 + 3 = 13.\]

---

$\boxed{13}$ possible functions $f(x)$, corresponding to answer choice $\boxed{E}$.

Video Solution 1 by OmegaLearn

https://youtu.be/SPbTyq3Dz_0