2025 AMC 12A Problems/Problem 25: Difference between revisions
Tiankaizhang (talk | contribs) No edit summary |
Tiankaizhang (talk | contribs) Undo revision 266767 by Tiankaizhang (talk) Tag: Undo |
||
| Line 1: | Line 1: | ||
Polynomials <imath>P(x)</imath> and <imath>Q(x)</imath> each have degree <imath>3</imath> and leading coefficient <imath>1</imath>, and their roots are all elements of <imath>\{1,2,3,4,5\}</imath>. The function <imath>f(x) = \tfrac{P(x)}{Q(x)}</imath> has the property that there exist real numbers <imath>a < b < c < d</imath> such that the set of all real numbers <imath>x</imath> such that <imath>f(x) \leq 0</imath> consists of the closed interval <imath>[a,b]</imath> together with the open interval <imath>(c,d)</imath>. How many functions <imath>f(x)</imath> are possible? | |||
==Solution 1 by Victor Zhang == | |||
\documentclass[12pt]{article} | |||
\usepackage{amsmath, amssymb, amsthm} | |||
\usepackage{enumitem} | |||
\begin{document} | |||
\section*{Solution} | |||
\subsection*{Step 1: Sign chart analysis} | |||
< | From the structure <imath>f(x) \le 0</imath> on <imath>[a,b] \cup (c,d)</imath> and <imath>f(x) > 0</imath> elsewhere, | ||
we deduce: | |||
\begin{itemize} | |||
\item <imath>a</imath> and <imath>b</imath> are zeros of <imath>f</imath> (since we transition from <imath>f > 0</imath> to <imath>f \le | |||
0</imath> at <imath>a</imath> and from <imath>f \le 0</imath> to <imath>f > 0</imath> at <imath>b</imath>). | |||
\item <imath>c</imath> and <imath>d</imath> are poles or holes of <imath>f</imath> (since on <imath>(c,d)</imath> we have <imath>f \le | |||
0</imath>, at <imath>c^+</imath> and <imath>d^-</imath> the sign is negative, and immediately outside the | |||
interval <imath>f > 0</imath>). | |||
\end{itemize} | |||
Thus the sign pattern is:\\ | |||
<imath>\textstyle | |||
\begin{array}{cccccccccc} | \begin{array}{cccccccccc} | ||
& (-\infty, a) & a & (a,b) & b & (b,c) & c & (c,d) & d & (d,\infty) \\ | |||
f(x) & + & 0 & - & 0 & + & \text{pole} & - & \text{pole} & + | f(x) & + & 0 & - & 0 & + & \text{pole} & - & \text{pole} & + | ||
\end{array} | \end{array} | ||
</ | </imath> | ||
\section*{Step 2: Structure of \( f(x) \)} | |||
According to the given conditions, \( f(x) \) can be expressed as: | |||
\[ | |||
According to the given conditions, | |||
f(x) = \frac{(x-p_1)(x-p_2)(x-p_3)}{(x-q_1)(x-q_2)(x-q_3)}. | f(x) = \frac{(x-p_1)(x-p_2)(x-p_3)}{(x-q_1)(x-q_2)(x-q_3)}. | ||
\] | |||
Combining | Combining the sign analysis from Step 1, we can rewrite this expression as: | ||
\[ | |||
f(x) = \frac{(x-a)(x-b)(x-p_3)}{(x-c)(x-d)(x-q_3)}. | f(x) = \frac{(x-a)(x-b)(x-p_3)}{(x-c)(x-d)(x-q_3)}. | ||
\] | |||
Furthermore, we can break down the expression into two parts: | |||
\[ | |||
f(x) = \frac{(x-a)(x-b)}{(x-c)(x-d)} \cdot \frac{x-p_3}{x-q_3}. | f(x) = \frac{(x-a)(x-b)}{(x-c)(x-d)} \cdot \frac{x-p_3}{x-q_3}. | ||
\] | |||
Defining \( f(x) = f_1(x) \cdot f_2(x) \), we have: | |||
\[ | |||
f_1(x) = \frac{(x-a)(x-b)}{(x-c)(x-d)}, \ | f_1(x) = \frac{(x-a)(x-b)}{(x-c)(x-d)}, \quad f_2(x) = \frac{x-p_3}{x-q_3}. | ||
\] | |||
--- | \section*{Step 3: Analysis of \( p_3 \) and \( q_3 \)} | ||
\begin{itemize} | |||
\item By analyzing the sign changes of \( f_1(x) \), we find that it completely | |||
satisfies the sign chart for \( f(x) \). We can therefore conclude that \( f_2(x) \) | |||
must be positive on every interval; otherwise, it would introduce an extra sign | |||
change. This forces the condition \( p_3 = q_3 \), because if \( p_3 \neq q_3 \), | |||
the factor \( f_2(x) \) would be negative on the interval between \( p_3 \) and \( | |||
q_3 \). Let \( p_3 = q_3 = t \). | |||
\item Furthermore, \( t \) cannot lie within \( [a,b] \cup (c,d) \). If it did, it | |||
would contradict the given condition that the set \( \{x : f(x) \le 0\} \) consists of | |||
the closed interval \( [a, b] \) and the open interval \( (c, d) \). | |||
\item Additionally, \( t \) cannot be equal to \( a \) or \( b \). If it were, that | |||
point would be a hole (a point of discontinuity) in the graph of \( f(x) \), which | |||
contradicts the fact that \( [a, b] \) is a \textbf{closed} interval where \( f(x) \le 0 | |||
\). On a closed interval, the function must be defined at the endpoints. | |||
\end{itemize} | |||
In conclusion, \( t \) can only be equal to \( c \) or \( d \), or lie in an interval | |||
outside of \( [a,b] \cup (c,d) \). | |||
\section*{Step 4: The Possible Values of <imath>a</imath>, <imath>b</imath>, <imath>c</imath>, <imath>d</imath>, and <imath>t</imath>} | |||
\begin{itemize} | |||
\item Given <imath>a < b < c < d</imath> and the condition that <imath>\{x: f(x) \leq 0\} = [a,b] | |||
\cup (c,d)</imath>, the number of ways to choose <imath>a,b,c,d</imath> from <imath>\{1,2,3,4,5\}</imath> is: | |||
\[ | |||
\binom{5}{4} = 5 | |||
\] | |||
The five cases are: | |||
<imath>[1,2]\cup (3,4)</imath>; <imath>[1,2]\cup (3,5)</imath>; <imath>[1,2]\cup (4,5)</imath>; <imath>[1,3]\cup (4,5)</imath>; | |||
<imath>[2,3]\cup (4,5)</imath> | |||
\item \textbf{Case 1:} <imath>[1,2]\cup (3,4)</imath>, <imath>t</imath> can be 3, 4, or 5.\\ | |||
This gives us 3 combinations: | |||
\[ | |||
f(x) = \frac{(x-1)(x-2)(x-3)}{(x-3)(x-4)(x-3)} | |||
\] | |||
\[ | |||
f(x) = \frac{(x-1)(x-2)(x-4)}{(x-3)(x-4)(x-4)} | |||
\] | |||
\[ | |||
f(x) = \frac{(x-1)(x-2)(x-5)}{(x-3)(x-4)(x-5)} | |||
\] | |||
\item \textbf{Case 2:} <imath>[1,2]\cup (3,5)</imath>, <imath>t</imath> can be 3 or 5.\\ | |||
* | This gives us 2 combinations: | ||
\[ | |||
f(x) = \frac{(x-1)(x-2)(x-3)}{(x-3)(x-5)(x-3)} | |||
\] | |||
\[ | |||
f(x) = \frac{(x-1)(x-2)(x-5)}{(x-3)(x-5)(x-5)} | |||
\] | |||
\item \textbf{Case 3:} <imath>[1,2]\cup (4,5)</imath>, <imath>t</imath> can be 3, 4, or 5.\\ | |||
This gives us 3 combinations: | |||
\[ | |||
f(x) = \frac{(x-1)(x-2)(x-3)}{(x-4)(x-5)(x-3)} | |||
\] | |||
\[ | |||
f(x) = \frac{(x-1)(x-2)(x-4)}{(x-4)(x-5)(x-4)} | |||
\] | |||
\[ | |||
f(x) = \frac{(x-1)(x-2)(x-5)}{(x-4)(x-5)(x-5)} | |||
\] | |||
\item \textbf{Case 4:} <imath>[1,3]\cup (4,5)</imath>, <imath>t</imath> can be 4 or 5.\\ | |||
This gives us 2 combinations: | |||
\[ | |||
f(x) = \frac{(x-1)(x-3)(x-4)}{(x-4)(x-5)(x-4)} | |||
\] | |||
\[ | |||
f(x) = \frac{(x-1)(x-3)(x-5)}{(x-4)(x-5)(x-5)} | |||
\] | |||
\item \textbf{Case 5:} <imath>[2,3]\cup (4,5)</imath>, <imath>t</imath> can be 1, 4, or 5.\\ | |||
This gives us 3 combinations: | |||
\[ | |||
f(x) = \frac{(x-2)(x-3)(x-1)}{(x-4)(x-5)(x-1)} | |||
\] | |||
\[ | |||
f(x) = \frac{(x-2)(x-3)(x-4)}{(x-4)(x-5)(x-4)} | |||
\] | |||
\[ | |||
f(x) = \frac{(x-2)(x-3)(x-5)}{(x-4)(x-5)(x-5)} | |||
\] | |||
\end{itemize} | |||
\section*{Step 5: Final Answer} | |||
Summing up all possible cases from Step 4 gives us <imath>3 + 2 + 3 + 2 + 3 = 13</imath> | |||
possible functions <imath>f(x)</imath>. | |||
Thus the answer is <imath>\boxed{E}</imath>. | |||
\end{document} | |||
\section*{Step 4: The possible of a,b,c,d, and t } | |||
\begin{itemize} | |||
\item According to given <imath>a < b < c < d </imath> and \( [a,b] \cup (c,d) \), the ways | |||
of choose a,b,c,d from {1,2,3,4,5}: | |||
<cmath> \binom{5}{4}=5</cmath> | |||
List 5 cases as:\\$[1,2]\cup (3,4); [1,2]\cup (3,5); [1,2]\cup (4,5); [1,3]\cup | |||
(4,5); [2,3]\cup (4,5)<imath> | |||
\item Case 1: </imath>[1,2]\cup (3,4)<imath>, t can be 3,4, or 5.\\ | |||
Give us 3 combnation: | |||
\[ | |||
f(x) = \frac{(x-1)(x-2)(x-3)}{(x-3)(x-4)(x-3)} | |||
\] | |||
\[ | |||
f(x) = \frac{(x-1)(x-2)(x-4)}{(x-3)(x-4)(x-4 | |||
)} | |||
\] | |||
\[ | |||
f(x) = \frac{(x-1)(x-2)(x-3)}{(x-3)(x-4)(x-3)} | |||
f(x) = \frac{(x-1)(x-2)(x-4)}{(x-3)(x-4)(x-4)} | |||
f(x) = \frac{(x-1)(x-2)(x-5)}{(x-3)(x-4)(x-5)}. | f(x) = \frac{(x-1)(x-2)(x-5)}{(x-3)(x-4)(x-5)}. | ||
\] | |||
\item Case 2: </imath>[1,2]\cup (3,5)<imath>, t can be 3, or 5.\\ | |||
Give us 2 combnation: | |||
<imath>t | \[ | ||
f(x) = \frac{(x-1)(x-2)(x-3)}{(x-3)(x-5)(x-3)} | |||
f(x) = \frac{(x-1)(x-2)(x-3)}{(x-3)(x-5)(x-3)} | \] | ||
f(x) = \frac{(x-1)(x-2)(x-5)}{(x-3)(x- | \[ | ||
f(x) = \frac{(x-1)(x-2)(x-5)}{(x-3)(x-4)(x-5 | |||
)} | |||
\] | |||
<imath>t | \item Case 3: </imath>[1,2]\cup (4,5)<imath>, t can be 3,4, or 5.\\ | ||
Give us 3 combnation: | |||
f(x) = \frac{(x-1)(x-2)(x-3)}{(x-4)(x-5)(x-3)} | \[ | ||
f(x) = \frac{(x-1)(x-2)(x-4)}{(x-4)(x-5)(x-4)} | f(x) = \frac{(x-1)(x-2)(x-3)}{(x-4)(x-5)(x-3)} | ||
\] | |||
\[ | |||
f(x) = \frac{(x-1)(x-2)(x-4)}{(x-4)(x-5)(x-4 | |||
)} | |||
\] | |||
\[ | |||
f(x) = \frac{(x-1)(x-2)(x-5)}{(x-4)(x-5)(x-5)}. | f(x) = \frac{(x-1)(x-2)(x-5)}{(x-4)(x-5)(x-5)}. | ||
\] | |||
\item Case 4: </imath>[1,3]\cup (4,5)<imath>, t can be 4, or 5.\\ | |||
Give us 2 combnation: | |||
<imath>t | \[ | ||
f(x) = \frac{(x-1)(x-3)(x-4)}{(x-4)(x-5)(x-4)} | |||
f(x) = \frac{(x-1)(x-3)(x-4)}{(x-4)(x-5)(x-4)} | |||
\] | |||
<imath>t | \[ | ||
f(x) = \frac{(x-1)(x-3)(x-5)}{(x-4)(x-5)(x-5 | |||
f(x) = \frac{(x-2)(x-3)(x-1)}{(x-4)(x-5)(x-1)} | )} | ||
f(x) = \frac{(x-2)(x-3)(x-4)}{(x-4)(x-5)(x-4)} | \] | ||
f(x) = \frac{(x-2)(x-3)(x-5)}{(x-4)(x-5)(x-5)} | \item Case 5: </imath>[2,3]\cup (4,5)<imath>, t can be 1,4, or 5.\\ | ||
Give us 3 combnation: | |||
\[ | |||
f(x) = \frac{(x-2)(x-3)(x-1)}{(x-4)(x-5)(x-1)} | |||
\] | |||
\[ | |||
f(x) = \frac{(x-2)(x-3)(x-4)}{(x-4)(x-5)(x-4)} | |||
\] \[ | |||
f(x) = \frac{(x-2)(x-3)(x-5)}{(x-4)(x-5)(x-5)} | |||
\] | |||
\section*{Step 5: final answer } | |||
\Sum up all possible cases of step 4 give us 13 possible functions f(x). | |||
Thus the answer is </imath>\boxed{E}$. | |||
\end{document} | |||
==Video Solution 1 by OmegaLearn== | |||
https://youtu.be/SPbTyq3Dz_0 | |||
Revision as of 02:25, 7 November 2025
Polynomials
and
each have degree
and leading coefficient
, and their roots are all elements of
. The function
has the property that there exist real numbers
such that the set of all real numbers
such that
consists of the closed interval
together with the open interval
. How many functions
are possible?
Solution 1 by Victor Zhang
\documentclass[12pt]{article} \usepackage{amsmath, amssymb, amsthm} \usepackage{enumitem} \begin{document} \section*{Solution}
\subsection*{Step 1: Sign chart analysis}
From the structure
on
and
elsewhere,
we deduce:
\begin{itemize}
\item
and
are zeros of
(since we transition from
to
at
and from
to
at
).
\item
and
are poles or holes of
(since on
we have
, at
and
the sign is negative, and immediately outside the
interval
).
\end{itemize}
Thus the sign pattern is:\\
\section*{Step 2: Structure of \( f(x) \)}
According to the given conditions, \( f(x) \) can be expressed as:
\[
f(x) = \frac{(x-p_1)(x-p_2)(x-p_3)}{(x-q_1)(x-q_2)(x-q_3)}.
\]
Combining the sign analysis from Step 1, we can rewrite this expression as:
\[
f(x) = \frac{(x-a)(x-b)(x-p_3)}{(x-c)(x-d)(x-q_3)}.
\]
Furthermore, we can break down the expression into two parts:
\[
f(x) = \frac{(x-a)(x-b)}{(x-c)(x-d)} \cdot \frac{x-p_3}{x-q_3}.
\]
Defining \( f(x) = f_1(x) \cdot f_2(x) \), we have:
\[
f_1(x) = \frac{(x-a)(x-b)}{(x-c)(x-d)}, \quad f_2(x) = \frac{x-p_3}{x-q_3}.
\]
\section*{Step 3: Analysis of \( p_3 \) and \( q_3 \)}
\begin{itemize}
\item By analyzing the sign changes of \( f_1(x) \), we find that it completely
satisfies the sign chart for \( f(x) \). We can therefore conclude that \( f_2(x) \)
must be positive on every interval; otherwise, it would introduce an extra sign
change. This forces the condition \( p_3 = q_3 \), because if \( p_3 \neq q_3 \),
the factor \( f_2(x) \) would be negative on the interval between \( p_3 \) and \(
q_3 \). Let \( p_3 = q_3 = t \).
\item Furthermore, \( t \) cannot lie within \( [a,b] \cup (c,d) \). If it did, it
would contradict the given condition that the set \( \{x : f(x) \le 0\} \) consists of
the closed interval \( [a, b] \) and the open interval \( (c, d) \).
\item Additionally, \( t \) cannot be equal to \( a \) or \( b \). If it were, that
point would be a hole (a point of discontinuity) in the graph of \( f(x) \), which
contradicts the fact that \( [a, b] \) is a \textbf{closed} interval where \( f(x) \le 0
\). On a closed interval, the function must be defined at the endpoints.
\end{itemize}
In conclusion, \( t \) can only be equal to \( c \) or \( d \), or lie in an interval
outside of \( [a,b] \cup (c,d) \).
\section*{Step 4: The Possible Values of
,
,
,
, and
}
\begin{itemize}
\item Given
and the condition that
, the number of ways to choose
from
is:
\[
\binom{5}{4} = 5
\]
The five cases are:
;
;
;
;
\item \textbf{Case 1:}
,
can be 3, 4, or 5.\\
This gives us 3 combinations:
\[
f(x) = \frac{(x-1)(x-2)(x-3)}{(x-3)(x-4)(x-3)}
\]
\[
f(x) = \frac{(x-1)(x-2)(x-4)}{(x-3)(x-4)(x-4)}
\]
\[
f(x) = \frac{(x-1)(x-2)(x-5)}{(x-3)(x-4)(x-5)}
\]
\item \textbf{Case 2:}
,
can be 3 or 5.\\
This gives us 2 combinations:
\[
f(x) = \frac{(x-1)(x-2)(x-3)}{(x-3)(x-5)(x-3)}
\]
\[
f(x) = \frac{(x-1)(x-2)(x-5)}{(x-3)(x-5)(x-5)}
\]
\item \textbf{Case 3:}
,
can be 3, 4, or 5.\\
This gives us 3 combinations:
\[
f(x) = \frac{(x-1)(x-2)(x-3)}{(x-4)(x-5)(x-3)}
\]
\[
f(x) = \frac{(x-1)(x-2)(x-4)}{(x-4)(x-5)(x-4)}
\]
\[
f(x) = \frac{(x-1)(x-2)(x-5)}{(x-4)(x-5)(x-5)}
\]
\item \textbf{Case 4:}
,
can be 4 or 5.\\
This gives us 2 combinations:
\[
f(x) = \frac{(x-1)(x-3)(x-4)}{(x-4)(x-5)(x-4)}
\]
\[
f(x) = \frac{(x-1)(x-3)(x-5)}{(x-4)(x-5)(x-5)}
\]
\item \textbf{Case 5:}
,
can be 1, 4, or 5.\\
This gives us 3 combinations:
\[
f(x) = \frac{(x-2)(x-3)(x-1)}{(x-4)(x-5)(x-1)}
\]
\[
f(x) = \frac{(x-2)(x-3)(x-4)}{(x-4)(x-5)(x-4)}
\]
\[
f(x) = \frac{(x-2)(x-3)(x-5)}{(x-4)(x-5)(x-5)}
\]
\end{itemize}
\section*{Step 5: Final Answer}
Summing up all possible cases from Step 4 gives us
possible functions
.
Thus the answer is
.
\end{document}
\section*{Step 4: The possible of a,b,c,d, and t }
\begin{itemize}
\item According to given
and \( [a,b] \cup (c,d) \), the ways
of choose a,b,c,d from {1,2,3,4,5}:
List 5 cases as:\\$[1,2]\cup (3,4); [1,2]\cup (3,5); [1,2]\cup (4,5); [1,3]\cup
(4,5); [2,3]\cup (4,5)$\item Case 1:$ (Error compiling LaTeX. Unknown error_msg)[1,2]\cup (3,4)$, t can be 3,4, or 5.\\
Give us 3 combnation:
\[
f(x) = \frac{(x-1)(x-2)(x-3)}{(x-3)(x-4)(x-3)}
\]
\[
f(x) = \frac{(x-1)(x-2)(x-4)}{(x-3)(x-4)(x-4
)}
\]
\[
f(x) = \frac{(x-1)(x-2)(x-5)}{(x-3)(x-4)(x-5)}.
\]
\item Case 2:$ (Error compiling LaTeX. Unknown error_msg)[1,2]\cup (3,5)$, t can be 3, or 5.\\
Give us 2 combnation:
\[
f(x) = \frac{(x-1)(x-2)(x-3)}{(x-3)(x-5)(x-3)}
\]
\[
f(x) = \frac{(x-1)(x-2)(x-5)}{(x-3)(x-4)(x-5
)}
\]
\item Case 3:$ (Error compiling LaTeX. Unknown error_msg)[1,2]\cup (4,5)$, t can be 3,4, or 5.\\
Give us 3 combnation:
\[
f(x) = \frac{(x-1)(x-2)(x-3)}{(x-4)(x-5)(x-3)}
\]
\[
f(x) = \frac{(x-1)(x-2)(x-4)}{(x-4)(x-5)(x-4
)}
\]
\[
f(x) = \frac{(x-1)(x-2)(x-5)}{(x-4)(x-5)(x-5)}.
\]
\item Case 4:$ (Error compiling LaTeX. Unknown error_msg)[1,3]\cup (4,5)$, t can be 4, or 5.\\
Give us 2 combnation:
\[
f(x) = \frac{(x-1)(x-3)(x-4)}{(x-4)(x-5)(x-4)}
\] \[ f(x) = \frac{(x-1)(x-3)(x-5)}{(x-4)(x-5)(x-5 )} \] \item Case 5:$ (Error compiling LaTeX. Unknown error_msg)[2,3]\cup (4,5)$, t can be 1,4, or 5.\\ Give us 3 combnation: \[ f(x) = \frac{(x-2)(x-3)(x-1)}{(x-4)(x-5)(x-1)} \] \[ f(x) = \frac{(x-2)(x-3)(x-4)}{(x-4)(x-5)(x-4)} \] \[ f(x) = \frac{(x-2)(x-3)(x-5)}{(x-4)(x-5)(x-5)} \]
\section*{Step 5: final answer } \Sum up all possible cases of step 4 give us 13 possible functions f(x).
Thus the answer is$ (Error compiling LaTeX. Unknown error_msg)\boxed{E}$. \end{document}