Art of Problem Solving

2025 AMC 12A Problems/Problem 25: Difference between revisions

Tiankaizhang (talk | contribs)
No edit summary
Tiankaizhang (talk | contribs)
Undo revision 266767 by Tiankaizhang (talk)
Tag: Undo
Line 1: Line 1:
We begin by analyzing the sign chart. From the condition <imath>f(x) \le 0</imath> on <imath>[a,b] \cup (c,d)</imath> and <imath>f(x) > 0</imath> elsewhere, we deduce the following:
Polynomials <imath>P(x)</imath> and <imath>Q(x)</imath> each have degree <imath>3</imath> and leading coefficient <imath>1</imath>, and their roots are all elements of <imath>\{1,2,3,4,5\}</imath>. The function <imath>f(x) = \tfrac{P(x)}{Q(x)}</imath> has the property that there exist real numbers <imath>a < b < c < d</imath> such that the set of all real numbers <imath>x</imath> such that <imath>f(x) \leq 0</imath> consists of the closed interval <imath>[a,b]</imath> together with the open interval <imath>(c,d)</imath>. How many functions <imath>f(x)</imath> are possible?


- <imath>a</imath> and <imath>b</imath> are zeros of <imath>f</imath>, since we transition from <imath>f>0</imath> to <imath>f\le0</imath> at <imath>a</imath>, and from <imath>f\le0</imath> to <imath>f>0</imath> at <imath>b</imath>.
==Solution 1 by Victor Zhang ==
- <imath>c</imath> and <imath>d</imath> are poles or holes of <imath>f</imath>, since on <imath>(c,d)</imath> we have <imath>f\le0</imath>, while immediately outside that interval <imath>f>0</imath>.
\documentclass[12pt]{article}
\usepackage{amsmath, amssymb, amsthm}
\usepackage{enumitem}
\begin{document}
\section*{Solution}


Thus, the sign pattern of <imath>f(x)</imath> is
\subsection*{Step 1: Sign chart analysis}
<cmath>
From the structure <imath>f(x) \le 0</imath> on <imath>[a,b] \cup (c,d)</imath> and <imath>f(x) &gt; 0</imath> elsewhere,
we deduce:
\begin{itemize}
\item <imath>a</imath> and <imath>b</imath> are zeros of <imath>f</imath> (since we transition from <imath>f &gt; 0</imath> to <imath>f \le
0</imath> at <imath>a</imath> and from <imath>f \le 0</imath> to <imath>f &gt; 0</imath> at <imath>b</imath>).
\item <imath>c</imath> and <imath>d</imath> are poles or holes of <imath>f</imath> (since on <imath>(c,d)</imath> we have <imath>f \le
0</imath>, at <imath>c^+</imath> and <imath>d^-</imath> the sign is negative, and immediately outside the
interval <imath>f &gt; 0</imath>).
\end{itemize}
Thus the sign pattern is:\\
<imath>\textstyle
\begin{array}{cccccccccc}
\begin{array}{cccccccccc}
& (-\infty, a) & a & (a,b) & b & (b,c) & c & (c,d) & d & (d,\infty) \\
&amp; (-\infty, a) &amp; a &amp; (a,b) &amp; b &amp; (b,c) &amp; c &amp; (c,d) &amp; d &amp; (d,\infty) \\
f(x) & + & 0 & - & 0 & + & \text{pole} & - & \text{pole} & +
f(x) &amp; + &amp; 0 &amp; - &amp; 0 &amp; + &amp; \text{pole} &amp; - &amp; \text{pole} &amp; +
\end{array}
\end{array}
</cmath>
</imath>
 
\section*{Step 2: Structure of \( f(x) \)}
---
According to the given conditions, \( f(x) \) can be expressed as:
 
\[
**Step 2. Structure of <imath>f(x)</imath>**
 
According to the given conditions, we can express
<cmath>
f(x) = \frac{(x-p_1)(x-p_2)(x-p_3)}{(x-q_1)(x-q_2)(x-q_3)}.
f(x) = \frac{(x-p_1)(x-p_2)(x-p_3)}{(x-q_1)(x-q_2)(x-q_3)}.
</cmath>
\]
Combining this with the sign analysis, we can write
Combining the sign analysis from Step 1, we can rewrite this expression as:
<cmath>
\[
f(x) = \frac{(x-a)(x-b)(x-p_3)}{(x-c)(x-d)(x-q_3)}.
f(x) = \frac{(x-a)(x-b)(x-p_3)}{(x-c)(x-d)(x-q_3)}.
</cmath>
\]
We can separate this into two factors:
Furthermore, we can break down the expression into two parts:
<cmath>
\[
f(x) = \frac{(x-a)(x-b)}{(x-c)(x-d)} \cdot \frac{x-p_3}{x-q_3}.
f(x) = \frac{(x-a)(x-b)}{(x-c)(x-d)} \cdot \frac{x-p_3}{x-q_3}.
</cmath>
\]
Define
Defining \( f(x) = f_1(x) \cdot f_2(x) \), we have:
<cmath>
\[
f_1(x) = \frac{(x-a)(x-b)}{(x-c)(x-d)}, \qquad f_2(x) = \frac{x-p_3}{x-q_3}.
f_1(x) = \frac{(x-a)(x-b)}{(x-c)(x-d)}, \quad f_2(x) = \frac{x-p_3}{x-q_3}.
</cmath>
\]


---
\section*{Step 3: Analysis of \( p_3 \) and \( q_3 \)}
\begin{itemize}
\item By analyzing the sign changes of \( f_1(x) \), we find that it completely
satisfies the sign chart for \( f(x) \). We can therefore conclude that \( f_2(x) \)
must be positive on every interval; otherwise, it would introduce an extra sign
change. This forces the condition \( p_3 = q_3 \), because if \( p_3 \neq q_3 \),
the factor \( f_2(x) \) would be negative on the interval between \( p_3 \) and \(
q_3 \). Let \( p_3 = q_3 = t \).
\item Furthermore, \( t \) cannot lie within \( [a,b] \cup (c,d) \). If it did, it
would contradict the given condition that the set \( \{x : f(x) \le 0\} \) consists of
the closed interval \( [a, b] \) and the open interval \( (c, d) \).
\item Additionally, \( t \) cannot be equal to \( a \) or \( b \). If it were, that
point would be a hole (a point of discontinuity) in the graph of \( f(x) \), which
contradicts the fact that \( [a, b] \) is a \textbf{closed} interval where \( f(x) \le 0
\). On a closed interval, the function must be defined at the endpoints.
\end{itemize}
In conclusion, \( t \) can only be equal to \( c \) or \( d \), or lie in an interval
outside of \( [a,b] \cup (c,d) \).
\section*{Step 4: The Possible Values of <imath>a</imath>, <imath>b</imath>, <imath>c</imath>, <imath>d</imath>, and <imath>t</imath>}
\begin{itemize}
\item Given <imath>a &lt; b &lt; c &lt; d</imath> and the condition that <imath>\{x: f(x) \leq 0\} = [a,b]
\cup (c,d)</imath>, the number of ways to choose <imath>a,b,c,d</imath> from <imath>\{1,2,3,4,5\}</imath> is:
\[
\binom{5}{4} = 5
\]
The five cases are:
<imath>[1,2]\cup (3,4)</imath>; <imath>[1,2]\cup (3,5)</imath>; <imath>[1,2]\cup (4,5)</imath>; <imath>[1,3]\cup (4,5)</imath>;
<imath>[2,3]\cup (4,5)</imath>
\item \textbf{Case 1:} <imath>[1,2]\cup (3,4)</imath>, <imath>t</imath> can be 3, 4, or 5.\\
This gives us 3 combinations:
\[
f(x) = \frac{(x-1)(x-2)(x-3)}{(x-3)(x-4)(x-3)}
\]
\[
f(x) = \frac{(x-1)(x-2)(x-4)}{(x-3)(x-4)(x-4)}
\]
\[
f(x) = \frac{(x-1)(x-2)(x-5)}{(x-3)(x-4)(x-5)}
\]
\item \textbf{Case 2:} <imath>[1,2]\cup (3,5)</imath>, <imath>t</imath> can be 3 or 5.\\


**Step 3. Determining <imath>p_3</imath> and <imath>q_3</imath>**
This gives us 2 combinations:
\[
f(x) = \frac{(x-1)(x-2)(x-3)}{(x-3)(x-5)(x-3)}
\]
\[
f(x) = \frac{(x-1)(x-2)(x-5)}{(x-3)(x-5)(x-5)}
\]
\item \textbf{Case 3:} <imath>[1,2]\cup (4,5)</imath>, <imath>t</imath> can be 3, 4, or 5.\\
This gives us 3 combinations:
\[
f(x) = \frac{(x-1)(x-2)(x-3)}{(x-4)(x-5)(x-3)}
\]
\[
f(x) = \frac{(x-1)(x-2)(x-4)}{(x-4)(x-5)(x-4)}
\]
\[
f(x) = \frac{(x-1)(x-2)(x-5)}{(x-4)(x-5)(x-5)}
\]
\item \textbf{Case 4:} <imath>[1,3]\cup (4,5)</imath>, <imath>t</imath> can be 4 or 5.\\
This gives us 2 combinations:
\[
f(x) = \frac{(x-1)(x-3)(x-4)}{(x-4)(x-5)(x-4)}
\]
\[
f(x) = \frac{(x-1)(x-3)(x-5)}{(x-4)(x-5)(x-5)}
\]
\item \textbf{Case 5:} <imath>[2,3]\cup (4,5)</imath>, <imath>t</imath> can be 1, 4, or 5.\\
This gives us 3 combinations:
\[
f(x) = \frac{(x-2)(x-3)(x-1)}{(x-4)(x-5)(x-1)}
\]
\[
f(x) = \frac{(x-2)(x-3)(x-4)}{(x-4)(x-5)(x-4)}
\]
\[
f(x) = \frac{(x-2)(x-3)(x-5)}{(x-4)(x-5)(x-5)}
\]
\end{itemize}
\section*{Step 5: Final Answer}
Summing up all possible cases from Step 4 gives us <imath>3 + 2 + 3 + 2 + 3 = 13</imath>
possible functions <imath>f(x)</imath>.
Thus the answer is <imath>\boxed{E}</imath>.
\end{document}


By analyzing the sign changes of <imath>f_1(x)</imath>, we see that it already matches the required sign pattern for <imath>f(x)</imath>. Therefore, <imath>f_2(x)</imath> must remain positive on every interval; otherwise, it would introduce extra sign changes.
\section*{Step 4: The possible of a,b,c,d, and t }
\begin{itemize}
\item According to given <imath>a &lt; b &lt; c &lt; d </imath> and \( [a,b] \cup (c,d) \), the ways
of choose a,b,c,d from {1,2,3,4,5}:
<cmath> \binom{5}{4}=5</cmath>
List 5 cases as:\\$[1,2]\cup (3,4); [1,2]\cup (3,5); [1,2]\cup (4,5); [1,3]\cup
(4,5); [2,3]\cup (4,5)<imath>


This means <imath>p_3 = q_3</imath>, since if <imath>p_3 \ne q_3</imath>, the factor <imath>\frac{x-p_3}{x-q_3}</imath> would change sign between <imath>p_3</imath> and <imath>q_3</imath>. 
\item Case 1: </imath>[1,2]\cup (3,4)<imath>, t can be 3,4, or 5.\\
Let <imath>p_3 = q_3 = t</imath>.
Give us 3 combnation:
 
\[
Furthermore:
f(x) = \frac{(x-1)(x-2)(x-3)}{(x-3)(x-4)(x-3)}
- <imath>t</imath> cannot lie within <imath>[a,b] \cup (c,d)</imath>, since that would alter the set <imath>\{x : f(x) \le 0\}</imath>.
\]
- <imath>t</imath> cannot be equal to <imath>a</imath> or <imath>b</imath>, since that would make those endpoints holes (discontinuities), contradicting that <imath>[a,b]</imath> is a *closed* interval.
\[
 
f(x) = \frac{(x-1)(x-2)(x-4)}{(x-3)(x-4)(x-4
Hence, <imath>t</imath> must either be equal to <imath>c</imath> or <imath>d</imath>, or lie outside <imath>[a,b] \cup (c,d)</imath>.
)}
 
\]
---
\[
 
**Step 4. Possible values of <imath>a,b,c,d,t</imath>**
 
Given <imath>a<b<c<d</imath> and <imath>\{x : f(x) \le 0\} = [a,b] \cup (c,d)</imath>, we choose four distinct numbers from <imath>\{1,2,3,4,5\}</imath> for <imath>a,b,c,d</imath>:
<cmath>
\binom{5}{4} = 5.
</cmath>
The five possible cases are:
<cmath>
[1,2]\cup(3,4), \quad [1,2]\cup(3,5), \quad [1,2]\cup(4,5), \quad [1,3]\cup(4,5), \quad [2,3]\cup(4,5).
</cmath>
 
---
 
**Case 1:** <imath>[1,2]\cup(3,4)</imath> 
<imath>t</imath> can be <imath>3</imath>, <imath>4</imath>, or <imath>5</imath>, giving 3 functions:
<cmath>
f(x) = \frac{(x-1)(x-2)(x-3)}{(x-3)(x-4)(x-3)}, \quad
f(x) = \frac{(x-1)(x-2)(x-4)}{(x-3)(x-4)(x-4)}, \quad
f(x) = \frac{(x-1)(x-2)(x-5)}{(x-3)(x-4)(x-5)}.
f(x) = \frac{(x-1)(x-2)(x-5)}{(x-3)(x-4)(x-5)}.
</cmath>
\]
 
\item Case 2: </imath>[1,2]\cup (3,5)<imath>, t can be 3, or 5.\\
**Case 2:** <imath>[1,2]\cup(3,5)</imath> 
Give us 2 combnation:
<imath>t</imath> can be <imath>3</imath> or <imath>5</imath>, giving 2 functions:
\[
<cmath>
f(x) = \frac{(x-1)(x-2)(x-3)}{(x-3)(x-5)(x-3)}
f(x) = \frac{(x-1)(x-2)(x-3)}{(x-3)(x-5)(x-3)}, \quad
\]
f(x) = \frac{(x-1)(x-2)(x-5)}{(x-3)(x-5)(x-5)}.
\[
</cmath>
f(x) = \frac{(x-1)(x-2)(x-5)}{(x-3)(x-4)(x-5
 
)}
**Case 3:** <imath>[1,2]\cup(4,5)</imath> 
\]
<imath>t</imath> can be <imath>3</imath>, <imath>4</imath>, or <imath>5</imath>, giving 3 functions:
\item Case 3: </imath>[1,2]\cup (4,5)<imath>, t can be 3,4, or 5.\\
<cmath>
Give us 3 combnation:
f(x) = \frac{(x-1)(x-2)(x-3)}{(x-4)(x-5)(x-3)}, \quad
\[
f(x) = \frac{(x-1)(x-2)(x-4)}{(x-4)(x-5)(x-4)}, \quad
f(x) = \frac{(x-1)(x-2)(x-3)}{(x-4)(x-5)(x-3)}
\]
\[
f(x) = \frac{(x-1)(x-2)(x-4)}{(x-4)(x-5)(x-4
)}
\]
\[
f(x) = \frac{(x-1)(x-2)(x-5)}{(x-4)(x-5)(x-5)}.
f(x) = \frac{(x-1)(x-2)(x-5)}{(x-4)(x-5)(x-5)}.
</cmath>
\]
 
\item Case 4: </imath>[1,3]\cup (4,5)<imath>, t can be 4, or 5.\\
**Case 4:** <imath>[1,3]\cup(4,5)</imath> 
Give us 2 combnation:
<imath>t</imath> can be <imath>4</imath> or <imath>5</imath>, giving 2 functions:
\[
<cmath>
f(x) = \frac{(x-1)(x-3)(x-4)}{(x-4)(x-5)(x-4)}
f(x) = \frac{(x-1)(x-3)(x-4)}{(x-4)(x-5)(x-4)}, \quad
f(x) = \frac{(x-1)(x-3)(x-5)}{(x-4)(x-5)(x-5)}.
</cmath>


**Case 5:** <imath>[2,3]\cup(4,5)</imath> 
\]
<imath>t</imath> can be <imath>1</imath>, <imath>4</imath>, or <imath>5</imath>, giving 3 functions:
\[
<cmath>
f(x) = \frac{(x-1)(x-3)(x-5)}{(x-4)(x-5)(x-5
f(x) = \frac{(x-2)(x-3)(x-1)}{(x-4)(x-5)(x-1)}, \quad
)}
f(x) = \frac{(x-2)(x-3)(x-4)}{(x-4)(x-5)(x-4)}, \quad
\]
f(x) = \frac{(x-2)(x-3)(x-5)}{(x-4)(x-5)(x-5)}.
\item Case 5: </imath>[2,3]\cup (4,5)<imath>, t can be 1,4, or 5.\\
</cmath>
Give us 3 combnation:
\[
f(x) = \frac{(x-2)(x-3)(x-1)}{(x-4)(x-5)(x-1)}
\]
\[
f(x) = \frac{(x-2)(x-3)(x-4)}{(x-4)(x-5)(x-4)}
\] \[
f(x) = \frac{(x-2)(x-3)(x-5)}{(x-4)(x-5)(x-5)}
\]


---
\section*{Step 5: final answer }
\Sum up all possible cases of step 4 give us 13 possible functions f(x).


**Step 5. Final Answer**
Thus the answer is </imath>\boxed{E}$.
\end{document}


Summing all possible cases:
==Video Solution 1 by OmegaLearn==
<cmath>
https://youtu.be/SPbTyq3Dz_0
3 + 2 + 3 + 2 + 3 = 13.
</cmath>
Thus, there are <imath>\boxed{13}</imath> possible functions <imath>f(x)</imath>, corresponding to choice <imath>\boxed{E}</imath>.

Revision as of 02:25, 7 November 2025

Polynomials $P(x)$ and $Q(x)$ each have degree $3$ and leading coefficient $1$, and their roots are all elements of $\{1,2,3,4,5\}$. The function $f(x) = \tfrac{P(x)}{Q(x)}$ has the property that there exist real numbers $a < b < c < d$ such that the set of all real numbers $x$ such that $f(x) \leq 0$ consists of the closed interval $[a,b]$ together with the open interval $(c,d)$. How many functions $f(x)$ are possible?

Solution 1 by Victor Zhang

\documentclass[12pt]{article} \usepackage{amsmath, amssymb, amsthm} \usepackage{enumitem} \begin{document} \section*{Solution}

\subsection*{Step 1: Sign chart analysis} From the structure $f(x) \le 0$ on $[a,b] \cup (c,d)$ and $f(x) &gt; 0$ elsewhere, we deduce: \begin{itemize} \item $a$ and $b$ are zeros of $f$ (since we transition from $f &gt; 0$ to $f \le 0$ at $a$ and from $f \le 0$ to $f &gt; 0$ at $b$). \item $c$ and $d$ are poles or holes of $f$ (since on $(c,d)$ we have $f \le 0$, at $c^+$ and $d^-$ the sign is negative, and immediately outside the interval $f &gt; 0$). \end{itemize} Thus the sign pattern is:\\ $\textstyle \begin{array}{cccccccccc} &amp; (-\infty, a) &amp; a &amp; (a,b) &amp; b &amp; (b,c) &amp; c &amp; (c,d) &amp; d &amp; (d,\infty) \\ f(x) &amp; + &amp; 0 &amp; - &amp; 0 &amp; + &amp; \text{pole} &amp; - &amp; \text{pole} &amp; + \end{array}$ \section*{Step 2: Structure of \( f(x) \)} According to the given conditions, \( f(x) \) can be expressed as: \[ f(x) = \frac{(x-p_1)(x-p_2)(x-p_3)}{(x-q_1)(x-q_2)(x-q_3)}. \] Combining the sign analysis from Step 1, we can rewrite this expression as: \[ f(x) = \frac{(x-a)(x-b)(x-p_3)}{(x-c)(x-d)(x-q_3)}. \] Furthermore, we can break down the expression into two parts: \[ f(x) = \frac{(x-a)(x-b)}{(x-c)(x-d)} \cdot \frac{x-p_3}{x-q_3}. \] Defining \( f(x) = f_1(x) \cdot f_2(x) \), we have: \[ f_1(x) = \frac{(x-a)(x-b)}{(x-c)(x-d)}, \quad f_2(x) = \frac{x-p_3}{x-q_3}. \]

\section*{Step 3: Analysis of \( p_3 \) and \( q_3 \)} \begin{itemize} \item By analyzing the sign changes of \( f_1(x) \), we find that it completely satisfies the sign chart for \( f(x) \). We can therefore conclude that \( f_2(x) \) must be positive on every interval; otherwise, it would introduce an extra sign change. This forces the condition \( p_3 = q_3 \), because if \( p_3 \neq q_3 \), the factor \( f_2(x) \) would be negative on the interval between \( p_3 \) and \( q_3 \). Let \( p_3 = q_3 = t \). \item Furthermore, \( t \) cannot lie within \( [a,b] \cup (c,d) \). If it did, it would contradict the given condition that the set \( \{x : f(x) \le 0\} \) consists of the closed interval \( [a, b] \) and the open interval \( (c, d) \). \item Additionally, \( t \) cannot be equal to \( a \) or \( b \). If it were, that point would be a hole (a point of discontinuity) in the graph of \( f(x) \), which contradicts the fact that \( [a, b] \) is a \textbf{closed} interval where \( f(x) \le 0 \). On a closed interval, the function must be defined at the endpoints. \end{itemize} In conclusion, \( t \) can only be equal to \( c \) or \( d \), or lie in an interval outside of \( [a,b] \cup (c,d) \). \section*{Step 4: The Possible Values of $a$, $b$, $c$, $d$, and $t$} \begin{itemize} \item Given $a &lt; b &lt; c &lt; d$ and the condition that $\{x: f(x) \leq 0\} = [a,b] \cup (c,d)$, the number of ways to choose $a,b,c,d$ from $\{1,2,3,4,5\}$ is: \[ \binom{5}{4} = 5 \] The five cases are: $[1,2]\cup (3,4)$; $[1,2]\cup (3,5)$; $[1,2]\cup (4,5)$; $[1,3]\cup (4,5)$; $[2,3]\cup (4,5)$ \item \textbf{Case 1:} $[1,2]\cup (3,4)$, $t$ can be 3, 4, or 5.\\ This gives us 3 combinations: \[ f(x) = \frac{(x-1)(x-2)(x-3)}{(x-3)(x-4)(x-3)} \] \[ f(x) = \frac{(x-1)(x-2)(x-4)}{(x-3)(x-4)(x-4)} \] \[ f(x) = \frac{(x-1)(x-2)(x-5)}{(x-3)(x-4)(x-5)} \] \item \textbf{Case 2:} $[1,2]\cup (3,5)$, $t$ can be 3 or 5.\\

This gives us 2 combinations: \[ f(x) = \frac{(x-1)(x-2)(x-3)}{(x-3)(x-5)(x-3)} \] \[ f(x) = \frac{(x-1)(x-2)(x-5)}{(x-3)(x-5)(x-5)} \] \item \textbf{Case 3:} $[1,2]\cup (4,5)$, $t$ can be 3, 4, or 5.\\ This gives us 3 combinations: \[ f(x) = \frac{(x-1)(x-2)(x-3)}{(x-4)(x-5)(x-3)} \] \[ f(x) = \frac{(x-1)(x-2)(x-4)}{(x-4)(x-5)(x-4)} \] \[ f(x) = \frac{(x-1)(x-2)(x-5)}{(x-4)(x-5)(x-5)} \] \item \textbf{Case 4:} $[1,3]\cup (4,5)$, $t$ can be 4 or 5.\\ This gives us 2 combinations: \[ f(x) = \frac{(x-1)(x-3)(x-4)}{(x-4)(x-5)(x-4)} \] \[ f(x) = \frac{(x-1)(x-3)(x-5)}{(x-4)(x-5)(x-5)} \] \item \textbf{Case 5:} $[2,3]\cup (4,5)$, $t$ can be 1, 4, or 5.\\ This gives us 3 combinations: \[ f(x) = \frac{(x-2)(x-3)(x-1)}{(x-4)(x-5)(x-1)} \] \[ f(x) = \frac{(x-2)(x-3)(x-4)}{(x-4)(x-5)(x-4)} \] \[ f(x) = \frac{(x-2)(x-3)(x-5)}{(x-4)(x-5)(x-5)} \] \end{itemize} \section*{Step 5: Final Answer} Summing up all possible cases from Step 4 gives us $3 + 2 + 3 + 2 + 3 = 13$ possible functions $f(x)$. Thus the answer is $\boxed{E}$. \end{document}

\section*{Step 4: The possible of a,b,c,d, and t } \begin{itemize} \item According to given $a &lt; b &lt; c &lt; d$ and \( [a,b] \cup (c,d) \), the ways of choose a,b,c,d from {1,2,3,4,5}: \[\binom{5}{4}=5\] List 5 cases as:\\$[1,2]\cup (3,4); [1,2]\cup (3,5); [1,2]\cup (4,5); [1,3]\cup (4,5); [2,3]\cup (4,5)$\item Case 1:$ (Error compiling LaTeX. Unknown error_msg)[1,2]\cup (3,4)$, t can be 3,4, or 5.\\ Give us 3 combnation: \[ f(x) = \frac{(x-1)(x-2)(x-3)}{(x-3)(x-4)(x-3)} \] \[ f(x) = \frac{(x-1)(x-2)(x-4)}{(x-3)(x-4)(x-4 )} \] \[ f(x) = \frac{(x-1)(x-2)(x-5)}{(x-3)(x-4)(x-5)}. \] \item Case 2:$ (Error compiling LaTeX. Unknown error_msg)[1,2]\cup (3,5)$, t can be 3, or 5.\\ Give us 2 combnation: \[ f(x) = \frac{(x-1)(x-2)(x-3)}{(x-3)(x-5)(x-3)} \] \[ f(x) = \frac{(x-1)(x-2)(x-5)}{(x-3)(x-4)(x-5 )} \] \item Case 3:$ (Error compiling LaTeX. Unknown error_msg)[1,2]\cup (4,5)$, t can be 3,4, or 5.\\ Give us 3 combnation: \[ f(x) = \frac{(x-1)(x-2)(x-3)}{(x-4)(x-5)(x-3)} \] \[ f(x) = \frac{(x-1)(x-2)(x-4)}{(x-4)(x-5)(x-4 )} \] \[ f(x) = \frac{(x-1)(x-2)(x-5)}{(x-4)(x-5)(x-5)}. \] \item Case 4:$ (Error compiling LaTeX. Unknown error_msg)[1,3]\cup (4,5)$, t can be 4, or 5.\\ Give us 2 combnation: \[ f(x) = \frac{(x-1)(x-3)(x-4)}{(x-4)(x-5)(x-4)}

\] \[ f(x) = \frac{(x-1)(x-3)(x-5)}{(x-4)(x-5)(x-5 )} \] \item Case 5:$ (Error compiling LaTeX. Unknown error_msg)[2,3]\cup (4,5)$, t can be 1,4, or 5.\\ Give us 3 combnation: \[ f(x) = \frac{(x-2)(x-3)(x-1)}{(x-4)(x-5)(x-1)} \] \[ f(x) = \frac{(x-2)(x-3)(x-4)}{(x-4)(x-5)(x-4)} \] \[ f(x) = \frac{(x-2)(x-3)(x-5)}{(x-4)(x-5)(x-5)} \]

\section*{Step 5: final answer } \Sum up all possible cases of step 4 give us 13 possible functions f(x).

Thus the answer is$ (Error compiling LaTeX. Unknown error_msg)\boxed{E}$. \end{document}

Video Solution 1 by OmegaLearn

https://youtu.be/SPbTyq3Dz_0