Art of Problem Solving

1972 AHSME Problems/Problem 3: Difference between revisions

Lopkiloinm (talk | contribs)
Khazix (talk | contribs)
Wrong letter selected
 
Line 11: Line 11:
== Solution ==
== Solution ==


Using DeMoivre's theorem, we can calculate <math>x^2=\frac{1+i\sqrt{3}}{2}</math> The denominator is therefore <math>-1</math> which makes the answer <cmath>\boxed{\textbf{(C) }-1}.</cmath> ~lopkiloinm
Using DeMoivre's theorem, we can calculate <math>x^2=\frac{1+i\sqrt{3}}{2}</math> The denominator is therefore <math>-1</math> which makes the answer <cmath>\boxed{\textbf{(B) }-1}.</cmath> ~lopkiloinm

Latest revision as of 00:04, 3 November 2025

Problem 3

If $x=\dfrac{1-i\sqrt{3}}{2}$ where $i=\sqrt{-1}$, then $\dfrac{1}{x^2-x}$ is equal to

$\textbf{(A) }-2\qquad \textbf{(B) }-1\qquad \textbf{(C) }1+i\sqrt{3}\qquad \textbf{(D) }1\qquad  \textbf{(E) }2$

Solution

Using DeMoivre's theorem, we can calculate $x^2=\frac{1+i\sqrt{3}}{2}$ The denominator is therefore $-1$ which makes the answer \[\boxed{\textbf{(B) }-1}.\] ~lopkiloinm