2024 AMC 12B Problems/Problem 19: Difference between revisions
No edit summary |
Ritwikrule (talk | contribs) |
||
| (13 intermediate revisions by 6 users not shown) | |||
| Line 16: | Line 16: | ||
Easily get <math>OF = \frac{14\sqrt{3}}{3}</math> | Easily get <math>OF = \frac{14\sqrt{3}}{3}</math> | ||
<math>2 \cdot \triangle(OFC) + \triangle(OCE) = OF^2 \cdot \sin(\theta) + OF^2 \cdot \sin(120 - \theta)</math> | <math>2 \cdot (\triangle(OFC) + \triangle(OCE)) = OF^2 \cdot \sin(\theta) + OF^2 \cdot \sin(120 - \theta)</math> | ||
<cmath> = \frac{14^2 \cdot 3}{9} ( \sin(\theta) + \sin(120 - \theta) ) </cmath> | <cmath> = \frac{14^2 \cdot 3}{9} ( \sin(\theta) + \sin(120 - \theta) ) </cmath> | ||
<cmath> = \frac{196}{3} ( \sin(\theta) + \sin(120 - \theta) ) </cmath> | <cmath> = \frac{196}{3} ( \sin(\theta) + \sin(120 - \theta) ) </cmath> | ||
<cmath> = 2 \cdot {\frac{1}{3} } \cdot( | <cmath> = 2 \cdot {\frac{1}{3} } \cdot(ADBECF) = 2\cdot \frac{91\sqrt{3}}{3} </cmath> | ||
<cmath> \sin(\theta) + \sin(120 - \theta) = \frac{13\sqrt{3}}{14} </cmath> | <cmath> \sin(\theta) + \sin(120 - \theta) = \frac{13\sqrt{3}}{14} </cmath> | ||
| Line 33: | Line 33: | ||
~[https://artofproblemsolving.com/wiki/index.php/User:Cyantist luckuso] | ~[https://artofproblemsolving.com/wiki/index.php/User:Cyantist luckuso] | ||
==Solution | ==Solution 2== | ||
From <math>\triangle ABC</math>'s side lengths of 14, we get OF = OC = OE = | From <math>\triangle ABC</math>'s side lengths of 14, we get | ||
We let angle FOC = | <cmath>OF = OC = OE = \frac{14\sqrt{3}}{3}.</cmath> | ||
And | We let <math>\angle FOC = \theta</math> | ||
And <math>\angle EOC = 120 - \theta</math> | |||
The answer would be | The answer would be <math>3([\triangle FOC] + [\triangle COE])</math> | ||
Which area <math>\triangle FOC</math> = | Which area <math>\triangle FOC</math> = <math>\frac{1}{2}\left(\frac{14\sqrt{3}}{3}\right)^2 \sin(\theta)</math> | ||
And area <math>\triangle COE</math> = | And area <math>\triangle COE</math> = <math>\frac{1}{2}\left(\frac{14\sqrt{3}}{3}\right)^2 \sin(120 - \theta)</math> | ||
So we have that | |||
3 | <cmath>3\cdot \frac{1}{2}\cdot \left(\frac{14\sqrt{3}}{3}\right)^2 (\sin(\theta)+\sin(120 - \theta)) = 91\sqrt{3}</cmath> | ||
Which <cmath> sin(\theta)+sin(120 - \theta) = \frac{91\sqrt{3}}{98} </cmath> | Which means | ||
<cmath>\sin(\theta)+\sin(120 - \theta) = \frac{91\sqrt{3}}{98}</cmath> | |||
<cmath>\frac{1}{2}\cos(\theta)+\frac{\sqrt{3}}{2}\sin(\theta) = \frac{91}{98}</cmath> | |||
<cmath>\sin(\theta + 30) = \frac{91}{98}</cmath> | |||
<cmath>\cos (\theta + 30) = \frac{21\sqrt{3}}{98}</cmath> | |||
<cmath>\tan(\theta + 30) = \frac{91}{21\sqrt{3}} = \frac{91\sqrt{3}}{63}</cmath> | |||
Now, <math>\tan(\theta)</math> can be calculated using the addition identity, which gives the answer of | |||
<cmath>\boxed{\text{(B) }\frac{5\sqrt{3}}{11}}.</cmath> | |||
~mitsuihisashi14 | |||
~[https://artofproblemsolving.com/wiki/index.php/User:Cyantist luckuso] (fixed Latex error ) | |||
==Solution 3 (No Trig Manipulations)== | |||
<asy> | |||
// Modified Asymptote diagram with correct right angle mark and alpha label. | |||
import olympiad; | |||
defaultpen(fontsize(13)); | |||
size(200); | |||
// Circumradius R = 14*sqrt(3)/3 | |||
real R = 14*sqrt(3)/3; | |||
// Define original points with scaling | |||
pair O = (0,0); | |||
pair A = R * dir(225); | |||
pair B = R * dir(-15); | |||
pair C = R * dir(105); | |||
pair D = rotate(38.21, O) * A; | |||
pair E = rotate(38.21, O) * B; | |||
pair F = rotate(38.21, O) * C; | |||
// Point H: Foot of altitude from B to DE | |||
pair DE_vec = E - D; | |||
pair perp_DE = (DE_vec.y, -DE_vec.x); // Rotate -90 degrees | |||
perp_DE = perp_DE / length(perp_DE); // Unit vector | |||
pair H = B - (2*sqrt(3)) * perp_DE; // Corrected direction | |||
// Point M: Extend BH to M, BM = 13*sqrt(3)/3 | |||
pair BH_vec = H - B; | |||
pair BM_unit = BH_vec / length(BH_vec); // Unit vector along BH | |||
pair M = B + (13*sqrt(3)/3) * BM_unit; // BM = 13*sqrt(3)/3 | |||
// Point P: Midpoint of BE | |||
pair P = (B + E) / 2; | |||
( | // Draw original triangles and polygon | ||
draw(A--B--C--A, gray+0.4); | |||
draw(D--E--F--D, gray+0.4); | |||
draw(A--D--B--E--C--F--A, black+0.9); | |||
// Draw new dashed segments | |||
draw(B--H, black+0.7+dashed); | |||
draw(H--M, black+0.7+dashed); | |||
draw(O--M, black+0.7+dashed); | |||
draw(O--P, black+0.7+dashed); | |||
draw(P--E, black+0.7+dashed); | |||
draw(O--B, black+0.7+dashed); | |||
// Draw right angle marker at OMB | |||
draw(rightanglemark(B, M, O, 15)); // Right angle at M, size 15 | |||
// Draw dots and labels | |||
dot(O); | |||
dot("$O$", O, dir(180)); | |||
dot("$A$", A, dir(A)); | |||
dot("$B$", B, dir(B)); | |||
dot("$C$", C, dir(C)); | |||
dot("$D$", D, dir(D)); | |||
dot("$E$", E, dir(E)); | |||
dot("$F$", F, dir(F)); | |||
dot("$H$", H, dir(270)); | |||
dot("$M$", M, dir(90)); | |||
dot("$P$", P, dir(0)); | |||
// Label angle POB as alpha, to the right of O | |||
draw(anglemark(B, O, P, 50)); // Angle mark at O | |||
label("$\alpha$", O + (1.5, -.23), dir(0)); // Position to the right of O | |||
</asy> | |||
Let the circumcenter of the circle inscribing this polygon be <math>O</math>. The area of the equilateral triangle is <math>\frac{\sqrt{3}}{4}*196=49\sqrt{3}</math>. The area of one of the three smaller triangles, say <math>\triangle{DBE}</math> is <math>14\sqrt{3}</math>. Let <math>BH</math> be the altitude of <math>\triangle{DBE}</math>, so if we extend <math>BH</math> to point <math>M</math> where <math>MO\perp{BM}</math>, we get right triangle <math>\triangle{OMB}</math>. Note that the height <math>BH=2\sqrt{3}</math>, computed given the area and side length <math>14</math>, so <math>MB=MH+HB=\frac{7\sqrt{3}}{3}+2\sqrt{3}=\frac{13\sqrt{3}}{3}</math>. <math>OB=\frac{14\sqrt{3}}{3}</math> so Pythag gives <math>OM=\sqrt{OB^2-MB^2}=3</math>. This means that <math>HE=7-OM=4</math>, so Pythag gives <math>BE=2\sqrt{7}</math>. Let <math>\frac{\theta}{2}=\alpha</math> and the midpoint of <math>BE</math> be <math>P</math> so that <math>BP=PE=\sqrt{7}</math>, so that Pythag on <math>\triangle{OPE}</math> gives <math>OP=\sqrt{OE^2-PE^2}=\sqrt{\frac{175}{3}}</math>. Then <math>\tan{\alpha}=\frac{\sqrt{7}}{\sqrt{\frac{175}{3}}}=\frac{\sqrt{3}}{5}</math>. Then <math>\tan{2\alpha}=\tan{\theta}=\frac{\frac{2\sqrt{3}}{5}}{1-\frac{3}{25}}=\boxed{\frac{5\sqrt{3}}{11}}</math>. | |||
-Magnetoninja | |||
==Solution 4== | |||
<cmath>[\triangle ABD] = \frac{[ADBECF]-[\triangle ABC]}{3} = \frac{91\sqrt{3}-49\sqrt{3}}{3} = 14\sqrt{3}</cmath> | |||
Let <math>M</math> be the intersection of <math>AB</math> and <math>DE</math>. Since <math>DMB</math> is isosceles and <math>\angle AMD = \theta</math>, we have <math>\angle ABD = \theta/2</math>. Also, all of the hexagon's internal angles are equal, so <math>\angle ADB = 120^\circ</math>. | |||
<asy> | |||
defaultpen(fontsize(13)); | |||
size(220); | |||
// Base points and rotation | |||
pair O = (0,0); | |||
pair A = dir(225); | |||
pair B = dir(-15); | |||
pair D = rotate(38.21, O)*A; | |||
pair E = rotate(38.21, O)*B; | |||
// Intersection point of AB and DE | |||
pair M = extension(A, B, D, E); | |||
// Triangle and segments | |||
defaultpen(fontsize(13)); | |||
size(220); | |||
// Base triangle from rotated figure | |||
pair O = (0,0); | |||
pair A = dir(225); | |||
pair B = dir(-15); | |||
pair D = rotate(38.21, O)*A; | |||
pair E = rotate(38.21, O)*B; | |||
// M is intersection of AB and DE | |||
pair M = extension(A, B, D, E); | |||
// Draw triangle and segment | |||
draw(A--B--D--cycle, black+0.9); | |||
draw(D--M, gray + dashed); | |||
// Draw angle theta at AMD | |||
real r = 0.1; | |||
path thetaArc = arc(M, r, degrees(D - M), degrees(A - M)); | |||
draw(thetaArc, gray); | |||
label("$\theta$", M + (r+0.1)*dir((degrees(D - M) + degrees(A - M))/2), gray); | |||
// Draw congruence ticks on MB and MD | |||
pair u1 = unit(B - M), u2 = unit(D - M); | |||
pair tick1a = midpoint(M--B) + rotate(90)*u1 * 0.04; | |||
pair tick1b = midpoint(M--B) + rotate(-90)*u1 * 0.04; | |||
pair tick2a = midpoint(M--D) + rotate(90)*u2 * 0.04; | |||
pair tick2b = midpoint(M--D) + rotate(-90)*u2 * 0.04; | |||
draw(tick1a--tick1b, gray); | |||
draw(tick2a--tick2b, gray); | |||
// Labels | |||
dot("$A$", A, dir(A)); | |||
dot("$B$", B, dir(B)); | |||
dot("$D$", D, dir(D)); | |||
dot("$M$", M, N); | |||
</asy> | |||
Using the side-angle-side area formula: | |||
<cmath>14\sqrt{3} = \frac{1}{2} \cdot 14 \cdot BD \cdot \sin\left(\frac{\theta}{2}\right) \Rightarrow BD = \frac{2\sqrt{3}}{\sin(\theta/2)}.</cmath> | |||
Apply Law of Sines on <math>\triangle ABD</math> with <math>\angle DAB = 60^\circ - \theta/2</math>: | |||
<cmath>\frac{14}{\sin 120^\circ} = \frac{BD}{\sin(60^\circ - \theta/2)}</cmath> | |||
<cmath>\frac{28}{\sqrt{3}} = \frac{2\sqrt{3}}{\sin(\theta/2)\sin(60^\circ - \theta/2)}.</cmath> | |||
<cmath>\sin(\theta/2)\sin(60^\circ - \theta/2) = \frac{3}{14}.</cmath> | |||
Using trig identities: | |||
<cmath>\sqrt{\frac{1-\cos(\theta)}{2}} \cdot (\sin(60^\circ)\cos(\theta/2) - \sin(\theta/2)\cos(60^\circ)) = \frac{3}{14}</cmath> | |||
<cmath>\sqrt{\frac{1-\cos(\theta)}{2}} \cdot \left(\frac{\sqrt{3}}{2}\cos(\theta/2) - \frac{1}{2}\sin(\theta/2)\right) = \frac{3}{14}</cmath> | |||
<cmath>\sqrt{\frac{1-\cos(\theta)}{2}} \cdot \left(\frac{\sqrt{3}}{2} \sqrt{\frac{1+\cos(\theta)}{2}} - \frac{1}{2} \sqrt{\frac{1-\cos(\theta)}{2}} \right) = \frac{3}{14}</cmath> | |||
<cmath>\left(\frac{\sqrt{3}}{2}\sqrt{\frac{1-\cos^2(\theta)}{4}} - \frac{1}{2}\left(\frac{1-\cos(\theta)}{2}\right)\right) = \frac{3}{14}</cmath> | |||
<cmath>\frac{\sqrt{3}\sin\theta}{4} - \frac{(1-\cos\theta)}{4} = \frac{3}{14}</cmath> | |||
<cmath>\sqrt{3}\sin\theta + \cos\theta = \frac{13}{7}</cmath> | |||
<cmath>\cos\theta = \frac{13}{7} - \sqrt{3}\sin\theta.</cmath> | |||
Substitute into <math>\sin^2\theta + \cos^2\theta = 1</math>: | |||
<cmath>\left(\frac{13}{7} - \sqrt{3}\sin\theta\right)^2 + \sin^2\theta = 1.</cmath> | |||
<cmath>4\sin^2\theta - \frac{26\sqrt{3}}{7}\sin\theta + \frac{120}{49} = 0.</cmath> | |||
Solving: | |||
<cmath>\sin\theta = \frac{5\sqrt{3}}{14} \quad (\text{valid root}), \quad \cos\theta = \frac{11}{14} \Rightarrow \tan\theta = \frac{5\sqrt{3}}{11}.</cmath> | |||
<cmath>\boxed{\text{(B) }\frac{5\sqrt{3}}{11}}</cmath> | |||
~sparkycat (ttm) | |||
==Video Solution by SpreadTheMathLove== | ==Video Solution by SpreadTheMathLove== | ||
Latest revision as of 17:43, 18 October 2025
Problem 19
Equilateral
with side length
is rotated about its center by angle
, where
, to form
. See the figure. The area of hexagon
is
. What is
?
Solution 1
Let O be circumcenter of the equilateral triangle
Easily get
is invalid given
,
Solution 2
From
's side lengths of 14, we get
We let
And
The answer would be
Which area
=
And area
=
So we have that
Which means
Now,
can be calculated using the addition identity, which gives the answer of
~mitsuihisashi14 ~luckuso (fixed Latex error )
Solution 3 (No Trig Manipulations)
Let the circumcenter of the circle inscribing this polygon be
. The area of the equilateral triangle is
. The area of one of the three smaller triangles, say
is
. Let
be the altitude of
, so if we extend
to point
where
, we get right triangle
. Note that the height
, computed given the area and side length
, so
.
so Pythag gives
. This means that
, so Pythag gives
. Let
and the midpoint of
be
so that
, so that Pythag on
gives
. Then
. Then
.
-Magnetoninja
Solution 4
Let
be the intersection of
and
. Since
is isosceles and
, we have
. Also, all of the hexagon's internal angles are equal, so
.
Using the side-angle-side area formula:
Apply Law of Sines on
with
:
Using trig identities:
Substitute into
:
Solving:
~sparkycat (ttm)
Video Solution by SpreadTheMathLove
https://www.youtube.com/watch?v=akLlCXKtXnk
See also
| 2024 AMC 12B (Problems • Answer Key • Resources) | |
| Preceded by Problem 18 |
Followed by Problem 20 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |
These problems are copyrighted © by the Mathematical Association of America.