Art of Problem Solving

2002 AMC 10P Problems/Problem 2: Difference between revisions

Wes (talk | contribs)
Mathloveryeah (talk | contribs)
 
(5 intermediate revisions by 2 users not shown)
Line 17: Line 17:
We can use the sum of an arithmetic series to solve this problem.
We can use the sum of an arithmetic series to solve this problem.


Let the first integer equal a. The last integer in this string will be <math>a+10.</math> Plugging in <math>n=11, a_1=a,</math> and <math>a_n=a+10</math> into <math>\frac{n(a_1 + a_n)}{2}=2002,</math> we get:
Let the first integer equal <math>a.</math> The last integer in this string will be <math>a+10.</math> Plugging in <math>n=11, a_1=a,</math> and <math>a_n=a+10</math> into <math>\frac{n(a_1 + a_n)}{2}=2002,</math> we get:


\begin{align*}
\begin{align*}
Line 25: Line 25:
2a&=354 \\
2a&=354 \\
a&=177\\
a&=177\\
\end{align*}
Thus, our answer is <math>\boxed{\textbf{(B) }177}</math>
== Solution 2 ==
We can directly add everything up since <math>1 + 2 + \; \dots \; + 10</math> is so little.
Similar to the first solution, let the first integer equal <math>a.</math> The last integer in this string will be <math>a+10.</math>
\begin{align*}
a + (a + 1) + (a + 2) + \; \dots \; + (a + 10) &= 2002 \\
11a + (1 + 2 + \; \dots \; + 10) &= 2002 \\
11a + 55 &= 2002 \\
11a &= 1947 \\
a &= \frac{1947}{11} \\
a &= 177 \\
\end{align*}
\end{align*}


Line 32: Line 48:
{{AMC10 box|year=2002|ab=P|num-b=1|num-a=3}}
{{AMC10 box|year=2002|ab=P|num-b=1|num-a=3}}
{{MAA Notice}}
{{MAA Notice}}
[[Category: Introductory Algebra Problems]]

Latest revision as of 20:39, 15 October 2025

Problem 2

The sum of eleven consecutive integers is $2002.$ What is the smallest of these integers?

$\text{(A) }175 \qquad \text{(B) }177 \qquad \text{(C) }179 \qquad \text{(D) }180 \qquad \text{(E) }181$

Solution 1

We can use the sum of an arithmetic series to solve this problem.

Let the first integer equal $a.$ The last integer in this string will be $a+10.$ Plugging in $n=11, a_1=a,$ and $a_n=a+10$ into $\frac{n(a_1 + a_n)}{2}=2002,$ we get:

\begin{align*} \frac{11(a + a+10)}{2}&=2002 \\ 11(2a+10)&=4004 \\ 2a+10&=364 \\ 2a&=354 \\ a&=177\\ \end{align*}

Thus, our answer is $\boxed{\textbf{(B) }177}$

Solution 2

We can directly add everything up since $1 + 2 + \; \dots \; + 10$ is so little.

Similar to the first solution, let the first integer equal $a.$ The last integer in this string will be $a+10.$

\begin{align*} a + (a + 1) + (a + 2) + \; \dots \; + (a + 10) &= 2002 \\ 11a + (1 + 2 + \; \dots \; + 10) &= 2002 \\ 11a + 55 &= 2002 \\ 11a &= 1947 \\ a &= \frac{1947}{11} \\ a &= 177 \\ \end{align*}

Thus, our answer is $\boxed{\textbf{(B) }177}$

See Also

2002 AMC 10P (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America.