Art of Problem Solving

2010 AMC 12A Problems/Problem 1: Difference between revisions

123456789 (talk | contribs)
Created page with '== Problem 1 == What is <math>\left(20-\left(2010-201\right)\right)+\left(2010-\left(201-20\right)\right)</math>? <math>\textbf{(A)}\ -4020 \qquad \textbf{(B)}\ 0 \qquad \textbf…'
 
Jyuan7 (talk | contribs)
 
(11 intermediate revisions by 8 users not shown)
Line 1: Line 1:
== Problem 1 ==
== Problem ==
What is <math>\left(20-\left(2010-201\right)\right)+\left(2010-\left(201-20\right)\right)</math>?
What is <math>\left(20-\left(2010-201\right)\right)+\left(2010-\left(201-20\right)\right)</math>?


<math>\textbf{(A)}\ -4020 \qquad \textbf{(B)}\ 0 \qquad \textbf{(C)}\ 40 \qquad \textbf{(D)}\ 401 \qquad \textbf{(E)}\ 4020</math>
<math>\textbf{(A)}\ -4020 \qquad \textbf{(B)}\ 0 \qquad \textbf{(C)}\ 40 \qquad \textbf{(D)}\ 401 \qquad \textbf{(E)}\ 4020</math>


[[2010 AMC 12A Problems/Problem 1|Solution]]
== Solution ==
<math>20-2010+201+2010-201+20=20+20=\boxed{\textbf{(C)}\,40}</math>.
 
==Video Solution==
https://youtu.be/KBlf0TKdI4I?si=XFer3NW2lpMxgjW_
 
== See Also ==
{{AMC12 box|year=2010|before=First Problem|num-a=2|ab=A}}
 
[[Category:Introductory Algebra Problems]]
{{MAA Notice}}

Latest revision as of 00:16, 11 October 2025

Problem

What is $\left(20-\left(2010-201\right)\right)+\left(2010-\left(201-20\right)\right)$?

$\textbf{(A)}\ -4020 \qquad \textbf{(B)}\ 0 \qquad \textbf{(C)}\ 40 \qquad \textbf{(D)}\ 401 \qquad \textbf{(E)}\ 4020$

Solution

$20-2010+201+2010-201+20=20+20=\boxed{\textbf{(C)}\,40}$.

Video Solution

https://youtu.be/KBlf0TKdI4I?si=XFer3NW2lpMxgjW_

See Also

2010 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America.