Art of Problem Solving

2023 AMC 10A Problems/Problem 18: Difference between revisions

Mathkiddie (talk | contribs)
Kindtoucan (talk | contribs)
Adds another (slightly faster) ending to solution 2
 
(63 intermediate revisions by 30 users not shown)
Line 1: Line 1:
==Problem==
== Problem ==
A rhombic dodecahedron is a solid with <math>12</math> congruent rhombus faces. At every vertex, <math>3</math> or <math>4</math> edges meet, depending on the vertex. How many vertices have exactly <math>3</math> edges meet?
A rhombic dodecahedron is a solid with <math>12</math> congruent rhombus faces. At every vertex, <math>3</math> or <math>4</math> edges meet, depending on the vertex. How many vertices have exactly <math>3</math> edges meet?


<math>\textbf{(A) }5\qquad\textbf{(B) }6\qquad\textbf{(C) }7\qquad\textbf{(D) }8\qquad\textbf{(E) }9</math>
<math>\textbf{(A) }5\qquad\textbf{(B) }6\qquad\textbf{(C) }7\qquad\textbf{(D) }8\qquad\textbf{(E) }9</math>


==Solution 1==
== Solution 1 ==
Note Euler's formula where <math>\text{Vertices}+\text{Faces}-\text{Edges}=2</math>. There are <math>12</math> faces. There are <math>24</math> edges, because there are 12 faces each with four edges and each edge is shared by two faces. Now we know that there are <math>2-12+24=14</math> vertices. Now note that the sum of the degrees of all the points is <math>48</math>(the number of edges times 2). Let <math>x=</math> the number of vertices with <math>3</math> edges. Now we know <math>\frac{3x+4(14-x)}{2}=24</math>. Solving this equation gives <math>x = \boxed{\textbf{(D) }8}</math>. ~aiden22gao ~zgahzlkw (LaTeX) ~ESAOPS (Simplified)


Note Euler's formula where <math>V+F-E=2</math>. There are <math>12</math> faces and the number of edges is <math>24</math> because there are 12 faces each with four edges and each edge is shared by two faces. Now we know that there are <math>14</math> vertices on the figure. Let <math>A</math> be the number of vertices with degree 3 and <math>B</math> be the number of vertices with degree 4. <math>A+B=14</math> is our first equation. Now note that the sum of the degrees of all the points is twice the number of edges. Now we know <math>3A+4B=48</math>. Solving this system of equations gives <math>B = 6</math> and <math>A = 8</math> so the answer is <math>\boxed{\textbf{(D) }8}</math>.
== Solution 2 ==
~aiden22gao ~zgahzlkw (LaTeX)
Let <math>x</math> be the number of vertices with 3 edges, and <math>y</math> be the number of vertices with 4 edges. Since there are <math>\frac{4*12}{2}=24</math> edges on the polyhedron, we can see that <math>\frac{3x+4y}{2}=24</math>. Then, <math>3x+4y=48</math>. Notice that by testing the answer choices, (D) is the only one that yields an integer solution for <math>y</math>. Thus, the answer is <math>\boxed{\textbf{(D) }8}</math>.


==Solution 2: Quick solution==
~Mathkiddie


Let <math>x</math> be the number of vertices with three edges, and <math>y</math> be the number of vertices with four edges. Since there are <math>\frac{4*12}{2}=24</math> edges on the polyhedron, we can see that <math>\frac{3x+4y}{2}=24</math>. Then, <math>3x+4y=48</math>. Notice that by testing the answer choices, (D) is the only one that yields an integer solution for <math>y</math>. Thus, the answer is <math>\boxed{\textbf{(D) }8}</math>.
== Solution 3 ==
With <math>12</math> rhombi, there are <math>4\cdot12=48</math> total boundaries. Each edge is used as a boundary twice, once for each face on either side. Thus we have <math>\dfrac{48}2=24</math> total edges.


==Solution 2==
Let <math>A</math> be the number of vertices with <math>3</math> edges (this is what the problem asks for) and <math>B</math> be the number of vertices with <math>4</math> edges. We have <math>3A + 4B = 48</math>.


With <math>12</math> rhombi, there are <math>4\cdot12=48</math> total boundaries. Each edge is used as a boundary twice, once for each face on either side. Thus we have <math>\dfrac{48}2=24</math> total edges.
Euler's formula states that, for all convex polyhedra, <math>V-E+F=2</math>. In our case, <math>V-24+12=2\implies V=14.</math> We know that <math>A+B</math> is the total number of vertices as we are given that all vertices are connected to either <math>3</math> or <math>4</math> edges. Therefore, <math>A+B=14.</math>


Let <math>A</math> be the number of vertices with <math>3</math> edges (this is what the problem asks for) and <math>B</math> be the number of vertices with <math>4</math> edges. We have <math>3A + 4B = 48</math>.  
We now have a system of two equations. Solving the system yields <math>A=\boxed{\textbf{(D) }8}</math>.


Euler's formula states that, for all convex polyhedra, <math>v-e+f=2</math>. In our case, <math>v-24+12=2\implies v=14.</math> We know that <math>A+B</math> is the total number of vertices as we are given that all vertices are connected to either <math>3</math> or <math>4</math> edges. Therefore, <math>A+B=14.</math>
Even without Euler's formula, we can do a bit of answer guessing. From <math>3A+4B=48</math>, we take mod <math>4</math> on both sides.


We now have a system of two equations. There are many ways to solve for <math>A</math>; choosing one yields <math>A=\boxed{\textbf{(D) }8}</math>.
<cmath>3A+4B\equiv48\pmod{4}</cmath><cmath>3A\equiv0\pmod{4}</cmath>


Even without Euler's formula, we can do a bit of answer guessing. From <math>3A+4B=48</math>, we take mod <math>4</math> on both sides.  
We know that <math>3A</math> must be divisible by <math>4</math>. We know that the factor of <math>3</math> will not affect the divisibility by <math>4</math> of <math>3A</math>, so we remove the <math>3</math>. We know that <math>A</math> is divisible by <math>4</math>. Checking answer choices, the only one divisible by <math>4</math> is indeed <math>A=\boxed{\textbf{(D) }8}</math>.


<cmath>3A+4B\equiv48~(\mod4)</cmath>
~Technodoggo ~zgahzlkw (small edits) ~ESAOPS (LaTeX)
<cmath>3A\equiv0~(\mod4)</cmath>


We know that <math>3A</math> must be divisible by <math>4</math>. We know that the factor of <math>3</math> will not affect the divisibility by <math>4</math> of <math>3A</math>, so we remove the <math>3</math>. We know that <math>A</math> is divisible by <math>4</math>. Checking answer choices, the only one divisible by <math>4</math> is indeed <math>A=\boxed{\textbf{(D) }8}</math>.  
== Solution 4 ==
Note that Euler's formula is <math>V+F-E=2</math>. We know <math>F=12</math> from the question. We also know <math>E = \frac{12 \cdot 4}{2} = 24</math> because every face has <math>4</math> edges and every edge is shared by <math>2</math> faces. We can solve for the vertices based on this information.


~Technodoggo ~zgahzlkw (small edits)
Using the formula we can find:<cmath>V + 12 - 24 = 2</cmath><cmath>V = 14</cmath>Let <math>t</math> be the number of vertices with <math>3</math> edges and <math>f</math> be the number of vertices with <math>4</math> edges. We know <math>t+f = 14</math> from the question and <math>3t + 4f = 48</math>. The second equation is because the total number of points is <math>48</math> because there are 12 rhombuses of <math>4</math> vertices. Now, we just have to solve a system of equations.<cmath>3t + 4f = 48</cmath><cmath>3t + 3f = 42</cmath><cmath>f = 6</cmath><cmath>t = 8</cmath>Our answer is simply just <math>t</math>, which is <math>\boxed{\textbf{(D) }8}</math> ~musicalpenguin


==Solution 3==
== Solution 5 ==
Note that Euler's formula is <math>V+F-E=2</math>. We know <math>F=12</math> from the question. We also know <math>E = \frac{12 \cdot 4}{2} = 24</math> because every face has <math>4</math> edges and every edge is shared by <math>2</math> faces.  We can solve for the vertices based on this information.  
Each of the twelve rhombi has two pairs of angles across from each other that must be congruent. If both pairs of angles occur at <math>4</math>-point intersections, we have a grid of squares. If both occur at <math>3</math>-point intersections, we would have a cube with six square faces. Therefore, two of the points must occur at a <math>3</math>-point intersection and two at a <math>4</math>-point intersection.


Using the formula we can find:
Since each <math>3</math>-point intersection has <math>3</math> adjacent rhombuses, we know the number of <math>3</math>-point intersections must equal the number of <math>3</math>-point intersections per rhombus times the number of rhombuses over <math>3</math>. Since there are <math>12</math> rhombuses and two <math>3</math>-point intersections per rhombus, this works out to be:
<cmath>V + 12 - 24 = 2</cmath>
 
<cmath>V = 14</cmath>
<math>\frac{2\cdot12}{3}</math>
Let <math>t</math> be the number of vertices with <math>3</math> edges and <math>f</math> be the number of vertices with <math>4</math> edges. We know <math>t+f = 14</math> from the question and <math>3t + 4f = 48</math>. The second equation is because the total number of points is <math>48</math> because there are 12 rhombuses of <math>4</math> vertices.
 
Now, we just have to solve a system of equations.
Hence: <math>\boxed{\textbf{(D) }8}</math> ~hollph27 ~Minor edits by FutureSphinx
<cmath>3t + 4f = 48</cmath>
 
<cmath>3t + 3f = 42</cmath>
== Solution 6 (Based on previous knowledge) ==
<cmath>f = 6</cmath>
Note that a rhombic dodecahedron is formed when a cube is turned inside out (as seen here), thus there are 6 4-vertices (corresponding to each face of the cube) and 8 3-vertices (corresponding to each corner of the cube). Thus the answer is <math>\boxed{\textbf{(D) }8}</math>
<cmath>t = 8</cmath>
 
Our answer is simply just <math>t</math>, which is <math>\boxed{\textbf{(D) }8}</math>
== Solution 7 (Dual) ==
~musicalpenguin
Note that a rhombic dodecahedron is the dual of a cuboctahedron. A cuboctahedron has <math>8</math> triangular faces, which correspond to <math>\boxed{\textbf{(D) }8}</math> vertices on a rhombic dodecahedron that have <math>3</math> edges.
 
== Solution 8 (Uses Solution 2)==
Continue through solution 2 until you get <math>3x+4y=48</math>. Then we have that <math>3x = 48-4y = 4(12-y) = \text{multiple of 4}</math> so <math>x</math> is a multiple of <math>4.</math> The only multiple of 4 answer choice is <math>8 = \boxed{(D)}</math>


==Solution 4==
~KindToucan
Each of the twelve rhombuses has two pairs of angles across from each other that must be the same. If both pairs of angles occur at <math>4</math>-point intersections, we have a grid of squares. If both occur at <math>3</math>-point intersections, we would have a cube with six square faces. Therefore, two of the points must occur at a <math>3</math>-point intersection and two at a <math>4</math>-point intersection.


Since each <math>3</math>-point intersection has <math>3</math> adjacent rhombuses, we know the number of <math>3</math>-point intersections must equal the number of <math>3</math>-point intersections per rhombus times the number of rhombuses over <math>3</math>. Since there are <math>12</math> rhombuses and two <math>3</math>-point intersections per rhombus, this works out to be:
== Video Solution (Easy To Follow)==
https://www.youtube.com/watch?v=SFxfxXsJaN8&t=7s
==Video Solution by Little Fermat==
https://youtu.be/h2Pf2hvF1wE?si=KLoAqmdqx_C55pEq&t=4063
~little-fermat
 
== Video Solution by Math-X (First fully understand the problem!!!) ==
https://youtu.be/GP-DYudh5qU?si=fFif-OiVZnkdTTv0&t=5105
 
~Math-X


<math>\frac{2*12}{3}</math>
== Video Solution ==
https://youtu.be/5OuzPFvJPEY


Hence: <math>\boxed{\textbf{(D) }8}</math>
== Video Solution ==
~hollph27
https://www.youtube.com/watch?v=Z-OCnHUwnj0


==Solution 5 (Based on previous knowledge)==
== Video Solution by OmegaLearn ==
Note that a rhombic dodecahedron is formed when a cube is turned inside out (as seen [https://en.wikipedia.org/wiki/Rhombic_dodecahedron#/media/File:R1-cube.gif here]), thus there are 6 4-vertices (corresponding to each face of the cube) and 8 3-vertices (corresponding to each corner of the cube). Thus the answer is <math>\boxed{\textbf{(D) }8}</math>
https://youtu.be/0AG5XmWY-D8


==Solution 6 (Using Answer Choices)==
== Video Solution by TheBeautyofMath ==
Let <math>m</math> be the number of <math>4</math>-edge vertices, and <math>n</math> be the number of <math>3</math>-edge vertices. The total number of vertices is <math>m+n</math>. Now, we know that there are <math>4 \cdot 12 = 48</math> vertices, but we have overcounted. We have overcounted <math>m</math> vertices <math>3</math> times and overcounted <math>n</math> vertices <math>2</math> times. Therefore, we subtract <math>3m</math> and <math>2n</math> from <math>48</math> and set it equal to our original number of vertices.
https://www.youtube.com/watch?v=zvKijDeiYUs
<cmath>48 - 3m - 2n = m+n</cmath>
<cmath>4m + 3n = 48</cmath>
From here, we reduce both sides modulo <math>4</math>. The <math>4m</math> disappears, and the left hand side becomes <math>3n</math>. The right hand side is <math>0</math>, meaning that <math>3n</math> must be divisible by <math>4</math>. Looking at the answer choices, this is only possible for <math>n = \boxed{8}</math>.


-DEVSAXENA
== Video Solution ==
https://youtu.be/0ssjr8KjOzk


(Isn't this the same as the last half of Solution 2?)
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)


==See Also==
==See Also==
https://en.wikipedia.org/wiki/Rhombic_dodecahedron
{{AMC10 box|year=2023|ab=A|num-b=17|num-a=19}}
{{AMC10 box|year=2023|ab=A|num-b=17|num-a=19}}
{{MAA Notice}}
{{MAA Notice}}

Latest revision as of 17:05, 23 September 2025

Problem

A rhombic dodecahedron is a solid with $12$ congruent rhombus faces. At every vertex, $3$ or $4$ edges meet, depending on the vertex. How many vertices have exactly $3$ edges meet?

$\textbf{(A) }5\qquad\textbf{(B) }6\qquad\textbf{(C) }7\qquad\textbf{(D) }8\qquad\textbf{(E) }9$

Solution 1

Note Euler's formula where $\text{Vertices}+\text{Faces}-\text{Edges}=2$. There are $12$ faces. There are $24$ edges, because there are 12 faces each with four edges and each edge is shared by two faces. Now we know that there are $2-12+24=14$ vertices. Now note that the sum of the degrees of all the points is $48$(the number of edges times 2). Let $x=$ the number of vertices with $3$ edges. Now we know $\frac{3x+4(14-x)}{2}=24$. Solving this equation gives $x = \boxed{\textbf{(D) }8}$. ~aiden22gao ~zgahzlkw (LaTeX) ~ESAOPS (Simplified)

Solution 2

Let $x$ be the number of vertices with 3 edges, and $y$ be the number of vertices with 4 edges. Since there are $\frac{4*12}{2}=24$ edges on the polyhedron, we can see that $\frac{3x+4y}{2}=24$. Then, $3x+4y=48$. Notice that by testing the answer choices, (D) is the only one that yields an integer solution for $y$. Thus, the answer is $\boxed{\textbf{(D) }8}$.

~Mathkiddie

Solution 3

With $12$ rhombi, there are $4\cdot12=48$ total boundaries. Each edge is used as a boundary twice, once for each face on either side. Thus we have $\dfrac{48}2=24$ total edges.

Let $A$ be the number of vertices with $3$ edges (this is what the problem asks for) and $B$ be the number of vertices with $4$ edges. We have $3A + 4B = 48$.

Euler's formula states that, for all convex polyhedra, $V-E+F=2$. In our case, $V-24+12=2\implies V=14.$ We know that $A+B$ is the total number of vertices as we are given that all vertices are connected to either $3$ or $4$ edges. Therefore, $A+B=14.$

We now have a system of two equations. Solving the system yields $A=\boxed{\textbf{(D) }8}$.

Even without Euler's formula, we can do a bit of answer guessing. From $3A+4B=48$, we take mod $4$ on both sides.

\[3A+4B\equiv48\pmod{4}\]\[3A\equiv0\pmod{4}\]

We know that $3A$ must be divisible by $4$. We know that the factor of $3$ will not affect the divisibility by $4$ of $3A$, so we remove the $3$. We know that $A$ is divisible by $4$. Checking answer choices, the only one divisible by $4$ is indeed $A=\boxed{\textbf{(D) }8}$.

~Technodoggo ~zgahzlkw (small edits) ~ESAOPS (LaTeX)

Solution 4

Note that Euler's formula is $V+F-E=2$. We know $F=12$ from the question. We also know $E = \frac{12 \cdot 4}{2} = 24$ because every face has $4$ edges and every edge is shared by $2$ faces. We can solve for the vertices based on this information.

Using the formula we can find:\[V + 12 - 24 = 2\]\[V = 14\]Let $t$ be the number of vertices with $3$ edges and $f$ be the number of vertices with $4$ edges. We know $t+f = 14$ from the question and $3t + 4f = 48$. The second equation is because the total number of points is $48$ because there are 12 rhombuses of $4$ vertices. Now, we just have to solve a system of equations.\[3t + 4f = 48\]\[3t + 3f = 42\]\[f = 6\]\[t = 8\]Our answer is simply just $t$, which is $\boxed{\textbf{(D) }8}$ ~musicalpenguin

Solution 5

Each of the twelve rhombi has two pairs of angles across from each other that must be congruent. If both pairs of angles occur at $4$-point intersections, we have a grid of squares. If both occur at $3$-point intersections, we would have a cube with six square faces. Therefore, two of the points must occur at a $3$-point intersection and two at a $4$-point intersection.

Since each $3$-point intersection has $3$ adjacent rhombuses, we know the number of $3$-point intersections must equal the number of $3$-point intersections per rhombus times the number of rhombuses over $3$. Since there are $12$ rhombuses and two $3$-point intersections per rhombus, this works out to be:

$\frac{2\cdot12}{3}$

Hence: $\boxed{\textbf{(D) }8}$ ~hollph27 ~Minor edits by FutureSphinx

Solution 6 (Based on previous knowledge)

Note that a rhombic dodecahedron is formed when a cube is turned inside out (as seen here), thus there are 6 4-vertices (corresponding to each face of the cube) and 8 3-vertices (corresponding to each corner of the cube). Thus the answer is $\boxed{\textbf{(D) }8}$

Solution 7 (Dual)

Note that a rhombic dodecahedron is the dual of a cuboctahedron. A cuboctahedron has $8$ triangular faces, which correspond to $\boxed{\textbf{(D) }8}$ vertices on a rhombic dodecahedron that have $3$ edges.

Solution 8 (Uses Solution 2)

Continue through solution 2 until you get $3x+4y=48$. Then we have that $3x = 48-4y = 4(12-y) = \text{multiple of 4}$ so $x$ is a multiple of $4.$ The only multiple of 4 answer choice is $8 = \boxed{(D)}$

~KindToucan

Video Solution (Easy To Follow)

https://www.youtube.com/watch?v=SFxfxXsJaN8&t=7s

Video Solution by Little Fermat

https://youtu.be/h2Pf2hvF1wE?si=KLoAqmdqx_C55pEq&t=4063 ~little-fermat

Video Solution by Math-X (First fully understand the problem!!!)

https://youtu.be/GP-DYudh5qU?si=fFif-OiVZnkdTTv0&t=5105

~Math-X

Video Solution

https://youtu.be/5OuzPFvJPEY

Video Solution

https://www.youtube.com/watch?v=Z-OCnHUwnj0

Video Solution by OmegaLearn

https://youtu.be/0AG5XmWY-D8

Video Solution by TheBeautyofMath

https://www.youtube.com/watch?v=zvKijDeiYUs

Video Solution

https://youtu.be/0ssjr8KjOzk

~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)

See Also

https://en.wikipedia.org/wiki/Rhombic_dodecahedron

2023 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America.