Art of Problem Solving

2006 AIME I Problems/Problem 1: Difference between revisions

MCrawford (talk | contribs)
mNo edit summary
Shafay 023 (talk | contribs)
 
(24 intermediate revisions by 11 users not shown)
Line 1: Line 1:
== Problem ==
== Problem ==
In quadrilateral <math> ABCD , \angle B </math> is a right angle, diagonal <math> \overline{AC} </math> is perpendicular to <math> \overline{CD},  AB=18, BC=21, </math> and <math> CD=14. </math> Find the perimeter of <math> ABCD. </math>


== Solution ==
In [[quadrilateral]] <math>ABCD</math>, <math>\angle B</math> is a [[right angle]], [[diagonal]] <math>\overline{AC}</math> is [[perpendicular]] to <math>\overline{CD}</math>, <math>AB=18</math>, <math>BC=21</math>, and <math>CD=14</math>. Find the [[perimeter]] of <math>ABCD</math>.


== Solution 1 ==


== See also ==
We construct the following diagram:
* [[2006 AIME I Problems]]
<asy>
pathpen = black;
pair C=(0,0),D=(0,-14),A=(-sqrt(765),0),B=IP(circle(C,21),circle(A,18));
D(MP("A",A,W)--MP("B",B,N)--MP("C",C,E)--MP("D",D,E)--A--C);
D(rightanglemark(A,C,D,40));
D(rightanglemark(A,B,C,40));
</asy><!--Asymptote by joml88-->
Using the [[Pythagorean Theorem]], we get the following two equations:
<cmath>AD^2 = AC^2 + CD^2</cmath>
<cmath>AC^2 = AB^2 + BC^2</cmath>
Substituting <math>AB^2 + BC^2</math> for <math>AC^2</math> gives us <math>AD^2 = AB^2 + BC^2 + CD^2</math>. Plugging in the given information, we get <math>AD^2 = 18^2 + 21^2 + 14^2 = 961 \implies AD = 31</math>, so the perimeter is <math>AB+BC+CD+AD = 18+21+14+31 = \boxed{84}</math>.
 
== See Also ==
 
{{AIME box|year=2006|n=I|before=First Question|num-a=2}}
{{MAA Notice}}
[[Category:Introductory Geometry Problems]]

Latest revision as of 06:22, 30 August 2025

Problem

In quadrilateral $ABCD$, $\angle B$ is a right angle, diagonal $\overline{AC}$ is perpendicular to $\overline{CD}$, $AB=18$, $BC=21$, and $CD=14$. Find the perimeter of $ABCD$.

Solution 1

We construct the following diagram: [asy] pathpen = black; pair C=(0,0),D=(0,-14),A=(-sqrt(765),0),B=IP(circle(C,21),circle(A,18)); D(MP("A",A,W)--MP("B",B,N)--MP("C",C,E)--MP("D",D,E)--A--C); D(rightanglemark(A,C,D,40)); D(rightanglemark(A,B,C,40)); [/asy] Using the Pythagorean Theorem, we get the following two equations: \[AD^2 = AC^2 + CD^2\] \[AC^2 = AB^2 + BC^2\] Substituting $AB^2 + BC^2$ for $AC^2$ gives us $AD^2 = AB^2 + BC^2 + CD^2$. Plugging in the given information, we get $AD^2 = 18^2 + 21^2 + 14^2 = 961 \implies AD = 31$, so the perimeter is $AB+BC+CD+AD = 18+21+14+31 = \boxed{84}$.

See Also

2006 AIME I (ProblemsAnswer KeyResources)
Preceded by
First Question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America.