Art of Problem Solving

1967 AHSME Problems/Problem 32: Difference between revisions

Wes (talk | contribs)
Tanstorm (talk | contribs)
 
(12 intermediate revisions by 2 users not shown)
Line 50: Line 50:
- PhunsukhWangdu
- PhunsukhWangdu


==Solution 3 (Law of Cosines Cheese)==
==Solution 3:==
The solution says it all. Since <math>\angle AOD</math> is supplementary to <math>\angle AOB</math>, <math>cos(\angle AOD) = cos(180 - \angle AOB)=-cos(\angle AOB) </math>. The law of cosines on <math>\triangle AOB</math> gives us <math>cos(\angle AOB)=\frac {8^2+4^2-6^2}{(2)(8)(4)}=\frac {11}{16}</math>. Again, we can use the law of cosines on <math>\triangle AOD</math>, which gives us <math>AD = \sqrt {8^2+6^2-2(8)(6)cos(\angle AOD)} = \sqrt {8^2+6^2+2(8)(6)cos(\angle AOB)} = \sqrt {8^2+6^2+2(8)(6)cos(\angle AOB)} = \sqrt {8^2+6^2+2(8)(6)(\frac {11}{16})=\sqrt{166}</math>, which gives us <math>\boxed{E \sqrt{166}}</math>.
The solution says it all. Since <math>\angle AOD</math> is supplementary to <math>\angle AOB</math>, <math>cos(\angle AOD) = cos(180^{\circ} - \angle AOB)=-cos(\angle AOB) </math>. The law of cosines on <math>\triangle AOB</math> gives us <math>cos(\angle AOB)=\frac {8^2+4^2-6^2}{(2)(8)(4)}=\frac {11}{16}</math>. Again, we can use the law of cosines on <math>\triangle AOD</math>, which gives us  
<cmath>AD=\sqrt {8^2+6^2-2(8)(6)cos(\angle AOD)}</cmath>
<cmath>=\sqrt {8^2+6^2-(2)(8)(6)cos(\angle 180^{\circ} - AOB)}</cmath>
<cmath>=\sqrt {8^2+6^2+(2)(8)(6)cos(\angle AOB)}</cmath>
<cmath>=\sqrt {8^2+6^2+(2)(8)(6)(\frac {11}{16})}</cmath>
<cmath>=\sqrt{166}</cmath>
which gives us <math>\boxed{\textbf{(E)}~\sqrt{166}}</math>


Note that this solution works even if the quadrilateral is not cyclic, and in general, it works if an angle's supplement is known. So imo, it's better jk.
Note that this solution works even if the quadrilateral is not cyclic, and in general, it works if an angle's supplement is known. (Anyone come from aops volume 2 lmao.)


-Wesssslili
-Tanstorm


== See also ==
== See also ==

Latest revision as of 03:47, 23 August 2025

Problem

In quadrilateral $ABCD$ with diagonals $AC$ and $BD$, intersecting at $O$, $BO=4$, $OD = 6$, $AO=8$, $OC=3$, and $AB=6$. The length of $AD$ is: $\textbf{(A)}\ 9\qquad \textbf{(B)}\ 10\qquad \textbf{(C)}\ 6\sqrt{3}\qquad \textbf{(D)}\ 8\sqrt{2}\qquad \textbf{(E)}\ \sqrt{166}$

Solution 1

After drawing the diagram, we see that we actually have a lot of lengths to work with. Considering triangle ABD, we know values of $AB, BD(BD = BO + OD)$, but we want to find the value of $AD$. We can apply stewart's theorem now, letting $m = 4, n = 6, AD = X, AB = 6$, and we have $10 \cdot 6 \cdot 4 + 8 \cdot 8 \cdot 10 = x^2 + 36 \cdot 6$, and we see that $x = \boxed{\textbf{(E)}~\sqrt{166}}$

Solution 2

[asy]  /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */ import graph; size(5cm);  real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */  pen dotstyle = black; /* point style */  real xmin = -9.78, xmax = 9.78, ymin = -5.72, ymax = 5.72;  /* image dimensions */   draw((-1,4)--(-4.08,3.78)--(-3.1,-3.42)--(1.56,-0.22)--cycle, linewidth(2));   /* draw figures */ draw((-1,4)--(-4.08,3.78), linewidth(2));  draw((-4.08,3.78)--(-3.1,-3.42), linewidth(2));  draw((-3.1,-3.42)--(1.56,-0.22), linewidth(2));  draw((1.56,-0.22)--(-1,4), linewidth(2));  draw(circle((-2.287661623108666,0.35726272352132055), 3.863626188061437), linewidth(2));  draw((-1,4)--(-3.1,-3.42), linewidth(2));  draw((-4.08,3.78)--(1.56,-0.22), linewidth(2));   /* dots and labels */ dot((-1,4),dotstyle);  label("$A$", (-0.92,4.2), NE * labelscalefactor);  dot((-4.08,3.78),dotstyle);  label("$B$", (-4.42,4), NE * labelscalefactor);  dot((-3.1,-3.42),dotstyle);  label("$C$", (-3.4,-3.94), NE * labelscalefactor);  dot((1.56,-0.22),dotstyle);  label("$D$", (1.8,-0.4), NE * labelscalefactor);  dot((-1.566733533935139,1.9975415134291763),linewidth(4pt) + dotstyle);  label("$O$", (-1.34,1.98), NE * labelscalefactor);  clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);   /* end of picture */ [/asy] (Diagram not to scale)

Since $AO \cdot OC = BO \cdot OD$, $ABCD$ is cyclic through power of a point. From the given information, we see that $\triangle{AOB}\sim \triangle{DOC}$ and $\triangle{BOC} \sim \triangle{AOD}$. Hence, we can find $CD=\frac{9}{2}$ and $AD=2 \cdot BC$. Letting $BC$ be $x$, we can use Ptolemy's to get \[6 \cdot \frac{9}{2} + 2x^2=10 \cdot 11 \implies x=\sqrt{\frac{83}{2}}\] Since we are solving for $AD=2x=2\cdot\sqrt{\frac{83}{2}}=\sqrt{4\cdot\frac{83}{2}} = \boxed{\textbf{(E)}~\sqrt{166}}$

- PhunsukhWangdu

Solution 3:

The solution says it all. Since $\angle AOD$ is supplementary to $\angle AOB$, $cos(\angle AOD) = cos(180^{\circ} - \angle AOB)=-cos(\angle AOB)$. The law of cosines on $\triangle AOB$ gives us $cos(\angle AOB)=\frac {8^2+4^2-6^2}{(2)(8)(4)}=\frac {11}{16}$. Again, we can use the law of cosines on $\triangle AOD$, which gives us \[AD=\sqrt {8^2+6^2-2(8)(6)cos(\angle AOD)}\] \[=\sqrt {8^2+6^2-(2)(8)(6)cos(\angle 180^{\circ} - AOB)}\] \[=\sqrt {8^2+6^2+(2)(8)(6)cos(\angle AOB)}\] \[=\sqrt {8^2+6^2+(2)(8)(6)(\frac {11}{16})}\] \[=\sqrt{166}\] which gives us $\boxed{\textbf{(E)}~\sqrt{166}}$

Note that this solution works even if the quadrilateral is not cyclic, and in general, it works if an angle's supplement is known. (Anyone come from aops volume 2 lmao.)

-Tanstorm

See also

1967 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 31
Followed by
Problem 33
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
All AHSME Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America.