Art of Problem Solving

2022 AMC 10A Problems/Problem 8: Difference between revisions

MRENTHUSIASM (talk | contribs)
No edit summary
Pomfun (talk | contribs)
m Video was no longer available
 
(13 intermediate revisions by 9 users not shown)
Line 1: Line 1:
{{duplicate|[[2022 AMC 10A Problems/Problem 8|2022 AMC 10A #8]] and [[2022 AMC 12A Problems/Problem 6|2022 AMC 12A #6]]}}
==Problem==
==Problem==


A data set consists of <math>6</math> not distinct) positive integers: <math>1</math>, <math>7</math>, <math>5</math>, <math>2</math>, <math>5</math>, and <math>X</math>. The
A data set consists of <math>6</math> (not distinct) positive integers: <math>1</math>, <math>7</math>, <math>5</math>, <math>2</math>, <math>5</math>, and <math>X</math>. The average (arithmetic mean) of the <math>6</math> numbers equals a value in the data set. What is the sum of all positive values of <math>X</math>?
average (arithmetic mean) of the <math>6</math> numbers equals a value in the data set. What is
the sum of all positive values of <math>X</math>?


<math>\textbf{(A) } 10 \qquad \textbf{(B) } 26 \qquad \textbf{(C) } 32 \qquad \textbf{(D) } 36 \qquad \textbf{(E) } 40</math>
<math>\textbf{(A) } 10 \qquad \textbf{(B) } 26 \qquad \textbf{(C) } 32 \qquad \textbf{(D) } 36 \qquad \textbf{(E) } 40</math>


==Solution==
==Solution (Casework)==
 
First, note that <math>1+7+5+2+5=20</math>. There are <math>3</math> possible cases:


'''Case 1: the mean is <math>5</math>'''
'''Case 1: the mean is <math>5</math>.'''


<math>X = 5 \cdot 6 - 20 = 10</math>.
<math>X = 5 \cdot 6 - 20 = 10</math>.


'''Case 2: the mean is <math>7</math>'''
'''Case 2: the mean is <math>7</math>.'''


<math>X = 7 \cdot 6 - 20 = 22</math>.
<math>X = 7 \cdot 6 - 20 = 22</math>.


'''Case 3: the mean is <math>X</math>'''
'''Case 3: the mean is <math>X</math>.'''


<math>\frac{20+X}{6} = X \Rightarrow X=4</math>.
<math>X= \frac{20+X}{6} \Rightarrow X=4</math>.


Hence, adding up the cases, the answer is <math>10+22+4=\boxed{\textbf{(D) }36}</math>.
Therefore, the answer is <math>10+22+4=\boxed{\textbf{(D) }36}</math>.


~MrThinker
~MrThinker
==Video Solution 1 (Quick and Simple)==
https://youtu.be/8s6SngtEBY4
~Education, the Study of Everything
==Video Solution 2 (Don't fall into the trap)==
https://youtu.be/7yAh4MtJ8a8?si=r_qxJ_xhfngz4Xu6&t=1143
~Math-X
==Video Solution 4==
https://youtu.be/35cuytqS9iw


== See Also ==
== See Also ==


{{AMC10 box|year=2022|ab=A|num-b=3|num-a=5}}
{{AMC10 box|year=2022|ab=A|num-b=7|num-a=9}}
{{AMC12 box|year=2022|ab=A|num-b=5|num-a=7}}
{{MAA Notice}}
{{MAA Notice}}

Latest revision as of 08:11, 21 June 2025

The following problem is from both the 2022 AMC 10A #8 and 2022 AMC 12A #6, so both problems redirect to this page.

Problem

A data set consists of $6$ (not distinct) positive integers: $1$, $7$, $5$, $2$, $5$, and $X$. The average (arithmetic mean) of the $6$ numbers equals a value in the data set. What is the sum of all positive values of $X$?

$\textbf{(A) } 10 \qquad \textbf{(B) } 26 \qquad \textbf{(C) } 32 \qquad \textbf{(D) } 36 \qquad \textbf{(E) } 40$

Solution (Casework)

First, note that $1+7+5+2+5=20$. There are $3$ possible cases:

Case 1: the mean is $5$.

$X = 5 \cdot 6 - 20 = 10$.

Case 2: the mean is $7$.

$X = 7 \cdot 6 - 20 = 22$.

Case 3: the mean is $X$.

$X= \frac{20+X}{6} \Rightarrow X=4$.

Therefore, the answer is $10+22+4=\boxed{\textbf{(D) }36}$.

~MrThinker

Video Solution 1 (Quick and Simple)

https://youtu.be/8s6SngtEBY4

~Education, the Study of Everything

Video Solution 2 (Don't fall into the trap)

https://youtu.be/7yAh4MtJ8a8?si=r_qxJ_xhfngz4Xu6&t=1143

~Math-X

Video Solution 4

https://youtu.be/35cuytqS9iw

See Also

2022 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2022 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America.