2017 AMC 8 Problems/Problem 3: Difference between revisions
| (5 intermediate revisions by 4 users not shown) | |||
| Line 5: | Line 5: | ||
<math>\textbf{(A) }4\qquad\textbf{(B) }4\sqrt{2}\qquad\textbf{(C) }8\qquad\textbf{(D) }8\sqrt{2}\qquad\textbf{(E) }16</math> | <math>\textbf{(A) }4\qquad\textbf{(B) }4\sqrt{2}\qquad\textbf{(C) }8\qquad\textbf{(D) }8\sqrt{2}\qquad\textbf{(E) }16</math> | ||
==Solution== | ==Solution 1== | ||
<math>\sqrt{16\sqrt{8\sqrt{4}}}</math> = <math>\sqrt{16\sqrt{8\cdot 2}}</math> = <math>\sqrt{16\sqrt{16}}</math> = <math>\sqrt{16\cdot 4}</math> = <math>\sqrt{64}</math> = <math>\boxed{\textbf{(C)}\ 8}</math>. | <math>\sqrt{16\sqrt{8\sqrt{4}}}</math> = <math>\sqrt{16\sqrt{8\cdot 2}}</math> = <math>\sqrt{16\sqrt{16}}</math> = <math>\sqrt{16\cdot 4}</math> = <math>\sqrt{64}</math> = <math>\boxed{\textbf{(C)}\ 8}</math>. | ||
==Worse Solution== | |||
~ Sahan | |||
We solve the general form expression <math>\sqrt{a\sqrt{b\sqrt{c}}}</math>. Note, | |||
<cmath>\sqrt{a\sqrt{b\sqrt{c}}}=(a^4b^2c^1)^\frac{1}{8}</cmath> | |||
Thus our answer is, | |||
<cmath>(16^4\cdot8^24^1)^\frac{1}{8}=16777216^{\frac{1}{8}}=8</cmath> | |||
==Video Solution (CREATIVE THINKING!!!)== | |||
https://youtu.be/elN5lYfeKnw | |||
~Education, the Study of Everything | |||
==Video Solution== | ==Video Solution== | ||
https://youtu.be/cY4NYSAD0vQ | https://youtu.be/cY4NYSAD0vQ | ||
| Line 19: | Line 33: | ||
{{MAA Notice}} | {{MAA Notice}} | ||
[[Category:Introductory Algebra Problems]] | |||
Latest revision as of 18:00, 7 June 2025
Problem
What is the value of the expression
?
Solution 1
=
=
=
=
=
.
Worse Solution
~ Sahan
We solve the general form expression
. Note,
Thus our answer is,
Video Solution (CREATIVE THINKING!!!)
~Education, the Study of Everything
Video Solution
~savannahsolver
See Also
| 2017 AMC 8 (Problems • Answer Key • Resources) | ||
| Preceded by Problem 2 |
Followed by Problem 4 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AJHSME/AMC 8 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America.