Art of Problem Solving

2006 AMC 10A Problems/Problem 6: Difference between revisions

Nookala123 (talk | contribs)
Anabel.disher (talk | contribs)
No edit summary
 
Line 4: Line 4:
<math> \textbf{(A) } \frac17\qquad \textbf{(B) } \frac27\qquad \textbf{(C) } 1\qquad \textbf{(D) } 7\qquad \textbf{(E) } 14 </math>
<math> \textbf{(A) } \frac17\qquad \textbf{(B) } \frac27\qquad \textbf{(C) } 1\qquad \textbf{(D) } 7\qquad \textbf{(E) } 14 </math>


== Solution ==
== Solution==
Taking the seventh root of both sides, we get <math>(7x)^2=14x</math>.
Taking the seventh root of both sides, we get <math>(7x)^2=14x</math>.


Simplifying the LHS gives <math>49x^2=14x</math>, which then simplifies to <math>7x=2</math>.
Simplifying the LHS gives <math>49x^2=14x</math>. This means that <math>7x = 2</math>, or <math>x = 0</math>.
 
However, <math>x</math> must be a non-zero value.


Thus, <math>x=\boxed{\textbf{(B) }\frac{2}{7}}</math>.
Thus, <math>x=\boxed{\textbf{(B) }\frac{2}{7}}</math>.
== See also ==
== See also ==
{{AMC10 box|year=2006|ab=A|num-b=5|num-a=7}}
{{AMC10 box|year=2006|ab=A|num-b=5|num-a=7}}

Latest revision as of 19:22, 14 April 2025

Problem

What non-zero real value for $x$ satisfies $(7x)^{14}=(14x)^7$?

$\textbf{(A) } \frac17\qquad \textbf{(B) } \frac27\qquad \textbf{(C) } 1\qquad \textbf{(D) } 7\qquad \textbf{(E) } 14$

Solution

Taking the seventh root of both sides, we get $(7x)^2=14x$.

Simplifying the LHS gives $49x^2=14x$. This means that $7x = 2$, or $x = 0$.

However, $x$ must be a non-zero value.

Thus, $x=\boxed{\textbf{(B) }\frac{2}{7}}$.

See also

2006 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America.