2010 AIME II Problems/Problem 7: Difference between revisions
Remove false credit Tag: Undo |
|||
| (7 intermediate revisions by 6 users not shown) | |||
| Line 1: | Line 1: | ||
== Problem | == Problem == | ||
<!-- don't remove the following tag, for PoTW on the Wiki front page--><onlyinclude>Let <math>P(z)=z^3+az^2+bz+c</math>, where a, b, and c are real. There exists a complex number <math>w</math> such that the three roots of <math>P(z)</math> are <math>w+3i</math>, <math>w+9i</math>, and <math>2w-4</math>, where <math>i^2=-1</math>. Find <math>|a+b+c|</math>.<!-- don't remove the following tag, for PoTW on the Wiki front page--></onlyinclude> | |||
<!-- don't remove the following tag, for PoTW on the Wiki front page--><onlyinclude>Let <math>P(z)=z^3+az^2+bz+c</math>, where <math>a</math>, <math>b</math>, and <math>c</math> are real. There exists a complex number <math>w</math> such that the three roots of <math>P(z)</math> are <math>w+3i</math>, <math>w+9i</math>, and <math>2w-4</math>, where <math>i^2=-1</math>. Find <math>|a+b+c|</math>.<!-- don't remove the following tag, for PoTW on the Wiki front page--></onlyinclude> | |||
== Solution 1 (Vieta's) == | |||
Set <math>w=x+yi</math>, so <math>x_1 = x+(y+3)i</math>, <math>x_2 = x+(y+9)i</math>, <math>x_3 = 2x-4+2yi</math>. | Set <math>w=x+yi</math>, so <math>x_1 = x+(y+3)i</math>, <math>x_2 = x+(y+9)i</math>, <math>x_3 = 2x-4+2yi</math>. | ||
| Line 18: | Line 20: | ||
and therefore: <math>a=-12, b=84, c=-208</math>. Finally, we have <math>|a+b+c|=|-12+84-208|=\boxed{136}</math>. | and therefore: <math>a=-12, b=84, c=-208</math>. Finally, we have <math>|a+b+c|=|-12+84-208|=\boxed{136}</math>. | ||
== Solution 1b == | === Solution 1b === | ||
Same as solution 1 except that when you get to <math>x_1 = x</math>, <math>x_2 = x+6i</math>, <math>x_3 = 2x-4-6i</math>, you don't need to find the imaginary part of <math>c</math>. We know that <math>x_1</math> is a real number, which means that <math>x_2</math> and <math>x_3</math> are complex conjugates. Therefore, <math>x=2x-4</math>. | Same as solution 1 except that when you get to <math>x_1 = x</math>, <math>x_2 = x+6i</math>, <math>x_3 = 2x-4-6i</math>, you don't need to find the imaginary part of <math>c</math>. We know that <math>x_1</math> is a real number, which means that <math>x_2</math> and <math>x_3</math> are complex conjugates. Therefore, <math>x=2x-4</math>. | ||
| Line 24: | Line 26: | ||
== Solution 2 (casework) == | == Solution 2 (casework) == | ||
Note that at least one of <math>w+3i</math>, <math>w+9i</math>, | Note that at least one of <math>w+3i</math>, <math>w+9i</math>, or <math>2w-4</math> is real by complex conjugate roots. We now separate into casework based on which one. | ||
Let <math>w=x+yi</math>, where <math>x</math> and <math>y</math> are reals. | Let <math>w=x+yi</math>, where <math>x</math> and <math>y</math> are reals. | ||
| Line 38: | Line 40: | ||
~chrisdiamond10 | ~chrisdiamond10 | ||
== See | == Solution 3 == | ||
By Vieta's we know the sum of the roots must be <math>-a</math>, a real number. That means <math>4w+12i-4</math> is a real number, meaning <math>w</math> has an imaginary component of <math>-3i</math>. | |||
Now we write <math>w = x-3i</math>. Then, <math>w+3i</math> is the real root, meaning the other two are complex conjugates. We have <math>\overline{x+6i} = 2x-4-6i</math>, and solving, we get <math>x=4</math>. Then, <math>f(x) = (x-4)(x-4-6i)(x-4+6i) = (x-4)(x^2-8x+52)</math>. | |||
We get <math>|a+b+c| = |-12+84-208| = \boxed{136}</math>. | |||
-skibbysiggy | |||
== See Also == | |||
{{AIME box|year=2010|num-b=6|num-a=8|n=II}} | {{AIME box|year=2010|num-b=6|num-a=8|n=II}} | ||
{{MAA Notice}} | {{MAA Notice}} | ||
Latest revision as of 17:26, 10 April 2025
Problem
Let
, where
,
, and
are real. There exists a complex number
such that the three roots of
are
,
, and
, where
. Find
.
Solution 1 (Vieta's)
Set
, so
,
,
.
Since
, the imaginary part of
must be
.
Start with a, since it's the easiest one to do:
,
and therefore:
,
,
.
Now, do the part where the imaginary part of c is 0 since it's the second easiest one to do:
. The imaginary part is
, which is 0, and therefore
, since
doesn't work.
So now,
,
and therefore:
. Finally, we have
.
Solution 1b
Same as solution 1 except that when you get to
,
,
, you don't need to find the imaginary part of
. We know that
is a real number, which means that
and
are complex conjugates. Therefore,
.
Solution 2 (casework)
Note that at least one of
,
, or
is real by complex conjugate roots. We now separate into casework based on which one.
Let
, where
and
are reals.
Case 1:
is real. This implies that
is real, so by setting the imaginary part equal to zero we get
, so
. Now note that since
is real,
and
are complex conjugates. Thus
, so
, implying that
, so
.
Case 2:
is real. This means that
is real, so again setting imaginary part to zero we get
, so
. Now by the same logic as above
and
are complex conjugates. Thus
, so
, so
, which has no solution as
is real.
Case 3:
is real. Going through the same steps, we get
, so
. Now
and
are complex conjugates, but
, which means that
, so
, which has no solutions.
Thus case 1 is the only one that works, so
and our polynomial is
. Note that instead of expanding this, we can save time by realizing that the answer format is
, so we can plug in
to our polynomial to get the sum of coefficients, which will give us
. Plugging in
into our polynomial, we get
which evaluates to
. Since this is
, we subtract 1 from this to get
, so
.
~chrisdiamond10
Solution 3
By Vieta's we know the sum of the roots must be
, a real number. That means
is a real number, meaning
has an imaginary component of
.
Now we write
. Then,
is the real root, meaning the other two are complex conjugates. We have
, and solving, we get
. Then,
.
We get
.
-skibbysiggy
See Also
| 2010 AIME II (Problems • Answer Key • Resources) | ||
| Preceded by Problem 6 |
Followed by Problem 8 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America.