2009 AMC 10B Problems/Problem 20: Difference between revisions
New page: i think its B |
|||
| (38 intermediate revisions by 20 users not shown) | |||
| Line 1: | Line 1: | ||
== Problem == | |||
Triangle <math>ABC</math> has a right angle at <math>B</math>, <math>AB=1</math>, and <math>BC=2</math>. The bisector of <math>\angle BAC</math> meets <math>\overline{BC}</math> at <math>D</math>. What is <math>BD</math>? | |||
<asy> | |||
unitsize(2cm); | |||
defaultpen(linewidth(.8pt)+fontsize(8pt)); | |||
dotfactor=4; | |||
pair A=(0,1), B=(0,0), C=(2,0); | |||
pair D=extension(A,bisectorpoint(B,A,C),B,C); | |||
pair[] ds={A,B,C,D}; | |||
dot(ds); | |||
draw(A--B--C--A--D); | |||
label("$1$",midpoint(A--B),W); | |||
label("$B$",B,SW); | |||
label("$D$",D,S); | |||
label("$C$",C,SE); | |||
label("$A$",A,NW); | |||
draw(rightanglemark(C,B,A,2)); | |||
</asy> | |||
<math> | |||
\text{(A) } \frac {\sqrt3 - 1}{2} | |||
\qquad | |||
\text{(B) } \frac {\sqrt5 - 1}{2} | |||
\qquad | |||
\text{(C) } \frac {\sqrt5 + 1}{2} | |||
\qquad | |||
\text{(D) } \frac {\sqrt6 + \sqrt2}{2} | |||
\qquad | |||
\text{(E) } 2\sqrt 3 - 1 | |||
</math> | |||
== Solution 1 == | |||
By the Pythagorean Theorem, <math>AC=\sqrt5</math>. Then, from the Angle Bisector Theorem, we have: | |||
<cmath>\frac{BD}{1}=\frac{2-BD}{\sqrt5}</cmath> | |||
<cmath>BD\left(1+\frac{1}{\sqrt5}\right)=\frac{2}{\sqrt5}</cmath> | |||
<cmath>BD(\sqrt5+1)=2</cmath> | |||
<cmath>BD=\frac{2}{\sqrt5+1}=\boxed{\frac{\sqrt5-1}{2}} \implies {B}</cmath> | |||
== Solution 2 == | |||
Let <math>\theta = \angle BAD = \angle DAC</math>. Notice <math>\tan \theta = BD</math> and <math>\tan 2 \theta = 2</math>. By the double angle identity, <cmath>2 = \frac{2 BD}{1 - BD^2} \implies BD = \boxed{\frac{\sqrt5 - 1}{2} \implies B}.</cmath> | |||
Remarks: You could also use tangent half angle formula | |||
== Solution 3 == | |||
Let <math>BD=y</math>. | |||
Make <math>DE</math> a line so that it is perpendicular to <math>AC</math>. Since <math>AD</math> is an angle bisector, <math>\triangle AED</math> is congruent to <math>\triangle ABD</math>. | |||
Using the Pythagorean Theorem: | |||
<math>AC^2=1^2+2^2</math> | |||
<math>AC^2=5</math> | |||
<math>AC=\sqrt{5}</math> | |||
We know that <math>AE=1</math> by the congruent triangles, so <math>EC=\sqrt{5}-1</math>. We know that <math>DE=y</math>, <math>EC=\sqrt{5}-1</math>, and <math>DC=2-y</math>. We now have right triangle <math>DEC</math> and its 3 sides. Using the Pythagorean Thereom, we get: | |||
<math>y^2+(\sqrt{5}-1)^2=(2-y)^2</math> | |||
<math>-4y=2-2\sqrt{5}</math> | |||
So, <math>y=BD=\boxed{\frac{\sqrt5-1}{2} \implies B}.</math> | |||
~HelloWorld21 | |||
== Video Solution by OmegaLearn == | |||
https://youtu.be/4_x1sgcQCp4?t=4816 | |||
~ pi_is_3.14 | |||
== See Also == | |||
{{AMC10 box|year=2009|ab=B|num-b=19|num-a=21}} | |||
{{MAA Notice}} | |||
Latest revision as of 11:50, 10 August 2024
Problem
Triangle
has a right angle at
,
, and
. The bisector of
meets
at
. What is
?
Solution 1
By the Pythagorean Theorem,
. Then, from the Angle Bisector Theorem, we have:
Solution 2
Let
. Notice
and
. By the double angle identity,
Remarks: You could also use tangent half angle formula
Solution 3
Let
.
Make
a line so that it is perpendicular to
. Since
is an angle bisector,
is congruent to
.
Using the Pythagorean Theorem:
We know that
by the congruent triangles, so
. We know that
,
, and
. We now have right triangle
and its 3 sides. Using the Pythagorean Thereom, we get:
So,
~HelloWorld21
Video Solution by OmegaLearn
https://youtu.be/4_x1sgcQCp4?t=4816
~ pi_is_3.14
See Also
| 2009 AMC 10B (Problems • Answer Key • Resources) | ||
| Preceded by Problem 19 |
Followed by Problem 21 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America.