1959 AHSME Problems/Problem 22: Difference between revisions
No edit summary |
m improved clarity |
||
| (5 intermediate revisions by 2 users not shown) | |||
| Line 1: | Line 1: | ||
== | == Problem == | ||
The line joining the midpoints of the diagonals of a trapezoid has length <math>3</math>. If the longer base is <math>97,</math> then the shorter base is: <math>\textbf{(A)}\ 94 \qquad\textbf{(B)}\ 92\qquad\textbf{(C)}\ 91\qquad\textbf{(D)}\ 90\qquad\textbf{(E)}\ 89</math> | |||
== Solution 1 == | |||
<asy> | |||
Thus, 91. | import geometry; | ||
point B = (0,0); | |||
point A = (3,5); | |||
point D = (13,5); | |||
point C = (15,0); | |||
point M,N; | |||
// Trapezoid | |||
draw(A--B--C--D--A); | |||
dot(A); | |||
label("A",A,NW); | |||
dot(B); | |||
label("B",B,SW); | |||
dot(C); | |||
label("C",C,SE); | |||
dot(D); | |||
label("D",D,NE); | |||
// Diagonals and their midpoints | |||
draw(A--C); | |||
draw(B--D); | |||
M = midpoint(A--C); | |||
dot(M); | |||
label("M",M,ENE); | |||
N = midpoint(B--D); | |||
dot(N); | |||
label("N",N,WNW); | |||
draw(M--N); | |||
// Length Labels | |||
label("$x$",midpoint(A--D),(0,1)); | |||
label("$97$",midpoint(B--C),S); | |||
label("$3$",midpoint(M--N),S); | |||
</asy> | |||
Let <math>x</math> be the length of the shorter base. Then: | |||
<math>3 = \frac{97-x}{2}</math> | |||
<math>6 = 97-x</math> | |||
<math>x = 91</math> | |||
Thus, our answer is <math>\boxed{\textbf{(C) }91}</math>. | |||
== Solution 2 == | |||
Let the trapezoid be <math>ABCD</math> with <math>\overline{AD} \parallel \overline{BC}</math>, with <math>M</math> as the midpoint of <math>\overline{AC}</math>, and <math>N</math> as the midpoint of <math>\overline{BD}</math>, as in the diagram. As in the first solution, let the shorter base of the trapezoid (<math>\overline{AD}</math>) have length <math>x</math>. Because <math>\overline{AD} \parallel \overline{BC}</math>, we can imagine shifting <math>\overline{AC}</math> along <math>\overleftrightarrow{BC}</math> by distance <math>x</math> such that <math>A</math> is at <math>D</math>, at which point we get the following triangle: | |||
<asy> | |||
import geometry; | |||
size(10cm); | |||
point B = (0,0); | |||
point C = (25,0); | |||
point A = (13,5); | |||
point M,N; | |||
// Triangle ABC | |||
draw(A--B--C--A); | |||
dot(A); | |||
label("A",A,(0,1)); | |||
dot(B); | |||
label("B",B,SW); | |||
dot(C); | |||
label("C",C,SE); | |||
// Midpoint connector | |||
M = midpoint(A--C); | |||
dot(M); | |||
label("M",M,NE); | |||
N = midpoint(B--A); | |||
dot(N); | |||
label("N",N,NW); | |||
draw(M--N); | |||
// Length Labels | |||
label("$97+x$",midpoint(B--C),S); | |||
label("$3+x$",midpoint(M--N),S); | |||
</asy> | |||
Because <math>\overline{MN}</math> is a [[Midpoint#Midsegments|midpoint connector]] of <math>\triangle ABC</math>, <math>MN=\frac{1}{2}BC</math>, and so we have the equation <math>3+x=\frac{97+x}{2}</math>. Solving for <math>x</math> yields <math>x=\boxed{\textbf{(C) }91}</math>. | |||
==See also== | |||
{{AHSME 50p box|year=1959|num-b=21|num-a=23}} | |||
{{MAA Notice}} | |||
[[Category:Introductory Geometry Problems]] | |||
Latest revision as of 12:20, 21 July 2024
Problem
The line joining the midpoints of the diagonals of a trapezoid has length
. If the longer base is
then the shorter base is:
Solution 1
Let
be the length of the shorter base. Then:
Thus, our answer is
.
Solution 2
Let the trapezoid be
with
, with
as the midpoint of
, and
as the midpoint of
, as in the diagram. As in the first solution, let the shorter base of the trapezoid (
) have length
. Because
, we can imagine shifting
along
by distance
such that
is at
, at which point we get the following triangle:
Because
is a midpoint connector of
,
, and so we have the equation
. Solving for
yields
.
See also
| 1959 AHSC (Problems • Answer Key • Resources) | ||
| Preceded by Problem 21 |
Followed by Problem 23 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 • 41 • 42 • 43 • 44 • 45 • 46 • 47 • 48 • 49 • 50 | ||
| All AHSME Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America.