1965 AHSME Problems/Problem 35: Difference between revisions
created solution page |
|||
| (3 intermediate revisions by the same user not shown) | |||
| Line 11: | Line 11: | ||
== Solution == | == Solution == | ||
<math>\fbox{D}</math> | |||
<asy> | |||
import geometry; | |||
point M; | |||
segment l; | |||
// Rectangle ABCD | |||
draw((0,sqrt(5))--(0,0)--(5,0)--(5,sqrt(5))--(0,sqrt(5))); | |||
dot((0,sqrt(5))); | |||
label("A", (0,sqrt(5)), NW); | |||
dot((0,0)); | |||
label("B", (0,0), SW); | |||
dot((5,0)); | |||
label("C", (5,0), SE); | |||
dot((5,sqrt(5))); | |||
label("D", (5, sqrt(5)), NE); | |||
// Segment AC and point M | |||
M=(2.5,sqrt(5)/2); | |||
l=line((0,sqrt(5)),(5,0)); | |||
draw(l); | |||
dot(M); | |||
label("M",M,W); | |||
// Segments AX, CY, and XY | |||
pair[] x=intersectionpoints(perpendicular(M,l),(0,0)--(5,0)); | |||
pair[] y=intersectionpoints(perpendicular(M,l),(0,sqrt(5))--(5,sqrt(5))); | |||
dot(x[0]); | |||
label("X",x[0],SW); | |||
dot(y[0]); | |||
label("Y",y[0],NE); | |||
draw((0,sqrt(5))--x[0]); | |||
draw((5,0)--y[0]); | |||
draw(x[0]--y[0]); | |||
// Right Angle Markers | |||
markscalefactor=0.025; | |||
draw(rightanglemark((0,sqrt(5)),M,y[0])); // Angle AMY | |||
draw(rightanglemark((5,0),M,x[0])); // Angle CMX | |||
draw(rightanglemark((0,sqrt(5)),(0,0),(5,0))); // Angle ABC | |||
draw(rightanglemark((0,sqrt(5)), (5,sqrt(5)),(5,0))); // Angle ADC | |||
// Length Labels | |||
label("$5$",(2.5,0),S); | |||
label("$w$",(0,sqrt(5)/2),W); | |||
</asy> | |||
Let the rectangle be <math>ABCD</math> with <math>AB=CD=w</math> and <math>AD=BC=5</math>, as in the diagram. We desire a line such that reflecting point <math>C</math> across that line yields point <math>A</math>. For this to happen, the line must be perpendicular to the diagonal <math>\overline{AC}</math>, and it must go through the midpoint of <math>\overline{AC}</math> (let it be point <math>M</math>). Let the intersection of this line with <math>\overline{BC}</math> be point <math>X</math> and with <math>\overline{AD}</math> be point <math>Y</math>. From the problem, we know that <math>XY=\sqrt{6}</math>. By [[Congruent (geometry)#HL Congruence|HL congruence]], <math>\triangle AMY \cong \triangle CMX</math>, so <math>AM=CM=x</math>, where <math>x</math> is some number. Furthermore, <math>XM=MY=\frac{\sqrt{6}}{2}</math>. By [[AA similarity]], <math>\triangle MXC \sim \triangle BAC</math>, so <math>\frac{MX}{MC}=\frac{BA}{BC}</math>. <math>MX=\frac{\sqrt{6}}{2}</math>, <math>MC=x</math>, <math>BA=w</math>, and <math>BC=5</math>, so we can rewrite this proportion to solve for <math>x</math> in terms of <math>w</math>: | |||
\begin{align*} | |||
\frac{\sqrt{6}/2}{x}&=\frac{w}{5} \\ | |||
\frac{5\sqrt{6}}{2}&=xw \\ | |||
x&=\frac{5\sqrt{6}}{2w} | |||
\end{align*} | |||
By the [[Pythagorean Theorem]] on <math>\triangle ABC</math>, we know that <math>w^2+25=4x^2</math>, and we can plug in our new expression for <math>x</math> into this equation to solve for <math>w</math>: | |||
\begin{align*} | |||
w^2+25&=4(\frac{5\sqrt{6}}{2w})^2 \\ | |||
w^2+25&=\frac{25*6}{w^2} \\ | |||
w^4+25w^2-150&=0 \\ | |||
(w^2-5)(w^2+30)&=0 | |||
\end{align*} | |||
Because <math>w>0</math>, <math>w^2=5</math>, and so <math>w=\boxed{\sqrt{5}}</math>, which corresponds to answer choice <math>\fbox{\textbf{(D)}}</math>. | |||
== See Also == | == See Also == | ||
Latest revision as of 15:54, 19 July 2024
Problem
The length of a rectangle is
inches and its width is less than
inches. The rectangle is folded so that two
diagonally opposite vertices coincide. If the length of the crease is
, then the width is:
Solution
Let the rectangle be
with
and
, as in the diagram. We desire a line such that reflecting point
across that line yields point
. For this to happen, the line must be perpendicular to the diagonal
, and it must go through the midpoint of
(let it be point
). Let the intersection of this line with
be point
and with
be point
. From the problem, we know that
. By HL congruence,
, so
, where
is some number. Furthermore,
. By AA similarity,
, so
.
,
,
, and
, so we can rewrite this proportion to solve for
in terms of
:
\begin{align*}
\frac{\sqrt{6}/2}{x}&=\frac{w}{5} \\
\frac{5\sqrt{6}}{2}&=xw \\
x&=\frac{5\sqrt{6}}{2w}
\end{align*}
By the Pythagorean Theorem on
, we know that
, and we can plug in our new expression for
into this equation to solve for
:
\begin{align*}
w^2+25&=4(\frac{5\sqrt{6}}{2w})^2 \\
w^2+25&=\frac{25*6}{w^2} \\
w^4+25w^2-150&=0 \\
(w^2-5)(w^2+30)&=0
\end{align*}
Because
,
, and so
, which corresponds to answer choice
.
See Also
| 1965 AHSC (Problems • Answer Key • Resources) | ||
| Preceded by Problem 34 |
Followed by Problem 36 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 | ||
| All AHSME Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America.