Art of Problem Solving

1976 AHSME Problems/Problem 5: Difference between revisions

Mathjams (talk | contribs)
Created page with "=Problem 5== How many integers greater than <math>10</math> and less than <math>100</math>, written in base-<math>10</math> notation, are increased by <math>9</math> when thei..."
 
Tecilis459 (talk | contribs)
Unify headers
 
(3 intermediate revisions by one other user not shown)
Line 1: Line 1:
=Problem 5==
== Problem ==
How many integers greater than <math>10</math> and less than <math>100</math>, written in base-<math>10</math> notation, are increased by <math>9</math> when their digits are reversed?
How many integers greater than <math>10</math> and less than <math>100</math>, written in base-<math>10</math> notation, are increased by <math>9</math> when their digits are reversed?


<math>\textbf{(A)}\ 0 \qquad \textbf{(B)}\ 1 \qquad \textbf{(C)}\ 8 \qquad \textbf{(D)}\ 9 \qquad \textbf{(E)}\ 10</math>
<math>\textbf{(A)}\ 0 \qquad \textbf{(B)}\ 1 \qquad \textbf{(C)}\ 8 \qquad \textbf{(D)}\ 9 \qquad \textbf{(E)}\ 10</math>


=Solution==
== Solution ==
Let our two digit number be <math>\overline{ab}</math>, where <math>a</math> is the tens digit, and <math>b</math> is the ones digit. So, <math>\overline{ab}=10a+b</math>. When we reverse our digits, it becomes <math>10b+a</math>. So, <math>10a+b+9=10b+a\implies a-b=1</math>. So, our numbers are <math>12, 23, 34, 45, 56, 67, 78, 89\Rightarrow \textbf{(C)}</math>.
Let our two digit number be <math>\overline{ab}</math>, where <math>a</math> is the tens digit, and <math>b</math> is the ones digit. So, <math>\overline{ab}=10a+b</math>. When we reverse our digits, it becomes <math>10b+a</math>. So, <math>10a+b+9=10b+a\implies a-b=1</math>. So, our numbers are <math>12, 23, 34, 45, 56, 67, 78, 89\Rightarrow \textbf{(C)}</math>.~MathJams
 
 
 
 
 
 
 
 
{{AHSME box|year=1976|before=[[1975 AHSME]]|after=[[1977 AHSME]]}}
{{AHSME box|year=1976|before=[[1975 AHSME]]|after=[[1977 AHSME]]}}

Latest revision as of 12:36, 16 July 2024

Problem

How many integers greater than $10$ and less than $100$, written in base-$10$ notation, are increased by $9$ when their digits are reversed?

$\textbf{(A)}\ 0 \qquad \textbf{(B)}\ 1 \qquad \textbf{(C)}\ 8 \qquad \textbf{(D)}\ 9 \qquad \textbf{(E)}\ 10$

Solution

Let our two digit number be $\overline{ab}$, where $a$ is the tens digit, and $b$ is the ones digit. So, $\overline{ab}=10a+b$. When we reverse our digits, it becomes $10b+a$. So, $10a+b+9=10b+a\implies a-b=1$. So, our numbers are $12, 23, 34, 45, 56, 67, 78, 89\Rightarrow \textbf{(C)}$.~MathJams

1976 AHSME (ProblemsAnswer KeyResources)
Preceded by
1975 AHSME
Followed by
1977 AHSME
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions