2009 USAMO Problems/Problem 4: Difference between revisions
| (5 intermediate revisions by 2 users not shown) | |||
| Line 4: | Line 4: | ||
Prove that <math>\text{max}(a_1, a_2, ... ,a_n) \le 4 \text{min}(a_1, a_2, ... , a_n)</math>. | Prove that <math>\text{max}(a_1, a_2, ... ,a_n) \le 4 \text{min}(a_1, a_2, ... , a_n)</math>. | ||
== Solution == | == Solution 1== | ||
Assume without loss of generality that <math>a_1 \geq a_2 \geq \cdots \geq a_n</math>. Now we seek to prove that <math>a_1 \le 4a_n</math>. | Assume without loss of generality that <math>a_1 \geq a_2 \geq \cdots \geq a_n</math>. Now we seek to prove that <math>a_1 \le 4a_n</math>. | ||
| Line 20: | Line 20: | ||
as desired. | as desired. | ||
== Solution 2== | |||
Assume without loss of generality that <math>a_1 \geq a_2 \geq \cdots \geq a_n</math>. | Assume without loss of generality that <math>a_1 \geq a_2 \geq \cdots \geq a_n</math>. | ||
Using the Cauchy–Bunyakovsky–Schwarz inequality and the inequality given, <cmath>\begin{align*} | Using the Cauchy–Bunyakovsky–Schwarz inequality and the inequality given, <cmath>\begin{align*} | ||
&\left(a_1+a_2 | &\left(a_1+a_2 + ... +a_n + 3a_n -\frac{3a_1}{4}\right)\left({1 \over a_1} + {1 \over a_2} + ... +{1 \over a_n}\right) \\ | ||
=&\left(\frac{a_1}{4}+a_2 | =&\left(\frac{a_1}{4}+a_2 + ... +a_{n-1}+4a_n\right)\left({1 \over a_1} + {1 \over a_2} + ... +{1 \over a_n}\right) \\ | ||
\ge& \left(\frac{1}{2}+n-2+2\right)^2 \\ | \ge& \left(\frac{1}{2}+n-2+2\right)^2 \\ | ||
=&\left(n+\frac{1}{2}\right)^2 \\ | =&\left(n+\frac{1}{2}\right)^2 \\ | ||
\ge& (a_1+a_2 | \ge& (a_1+a_2 + ... +a_{n})\left({1 \over a_1} + {1 \over a_2} + ... +{1 \over a_n}\right).\end{align*}</cmath> | ||
(Note that <math>n-2 \ge 0</math> since <math>n \ge 2</math> as given!) | (Note that <math>n-2 \ge 0</math> since <math>n \ge 2</math> as given!) | ||
This implies that <math>3a_n -\frac{3a_1}{4} \ge 0 \iff 4a_n \ge a_1</math> as desired. | This implies that <math>3a_n -\frac{3a_1}{4} \ge 0 \iff 4a_n \ge a_1</math> as desired. | ||
~Deng Tianle, username: Leole | |||
== See Also == | == See Also == | ||
Latest revision as of 23:50, 13 July 2024
Problem
For
let
,
, ...,
be positive real numbers such that
Prove that
.
Solution 1
Assume without loss of generality that
. Now we seek to prove that
.
By the Cauchy-Schwarz Inequality,
Since
, clearly
, dividing yields:
as desired.
Solution 2
Assume without loss of generality that
.
Using the Cauchy–Bunyakovsky–Schwarz inequality and the inequality given,
(Note that
since
as given!)
This implies that
as desired.
~Deng Tianle, username: Leole
See Also
| 2009 USAMO (Problems • Resources) | ||
| Preceded by Problem 3 |
Followed by Problem 5 | |
| 1 • 2 • 3 • 4 • 5 • 6 | ||
| All USAMO Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America.