Art of Problem Solving

1989 AIME Problems/Problem 6: Difference between revisions

mNo edit summary
Disphenoid lover (talk | contribs)
 
(73 intermediate revisions by 12 users not shown)
Line 1: Line 1:
== Problem ==
== Problem ==
Two skaters, Allie and Billie, are at points <math>A^{}_{}</math> and <math>B^{}_{}</math>, respectively, on a flat, frozen lake. The distance between <math>A^{}_{}</math> and <math>B^{}_{}</math> is <math>100^{}_{}</math> meters. Allie leaves <math>A^{}_{}</math> and skates at a speed of <math>8^{}_{}</math> meters per second on a straight line that makes a <math>60^\circ</math> angle with <math>AB^{}_{}</math>. At the same time Allie leaves <math>A^{}_{}</math>, Billie leaves <math>B^{}_{}</math> at a speed of <math>7^{}_{}</math> meters per second and follows the straight path that produces the earliest possible meeting of the two skaters, given their speeds. How many meters does Allie skate before meeting Billie?
Two skaters, Allie and Billie, are at [[point]]s <math>A</math> and <math>B</math>, respectively, on a flat, frozen lake. The [[distance]] between <math>A</math> and <math>B</math> is <math>100</math> meters. Allie leaves <math>A</math> and skates at a [[speed]] of <math>8</math> meters per second on a straight line that makes a <math>60^\circ</math> angle with <math>AB</math>. At the same time Allie leaves <math>A</math>, Billie leaves <math>B</math> at a speed of <math>7</math> meters per second and follows the [[straight]] path that produces the earliest possible meeting of the two skaters, given their speeds. How many meters does Allie skate before meeting Billie?
<center><asy>
pointpen=black; pathpen=black+linewidth(0.7);
pair A=(0,0),B=(10,0),C=6*expi(pi/3);
D(B--A); D(A--C,EndArrow); MP("A",A,SW);MP("B",B,SE);MP("60^{\circ}",A+(0.3,0),NE);MP("100",(A+B)/2);
</asy></center><!-- Minsoen's image: [[Image:AIME_1989_Problem_6.png]] -->


[[Image:AIME_1989_Problem_6.png]]
== Solution ==
Label the point of [[intersection]] as <math>C</math>. Since <math>d = rt</math>, <math>AC = 8t</math> and <math>BC = 7t</math>. According to the [[law of cosines]],
 
<center><asy>
pointpen=black; pathpen=black+linewidth(0.7);
pair A=(0,0),B=(10,0),C=16*expi(pi/3);
D(B--A); D(A--C); D(B--C,dashed); MP("A",A,SW);MP("B",B,SE);MP("C",C,N);MP("60^{\circ}",A+(0.3,0),NE);MP("100",(A+B)/2);MP("8t",(A+C)/2,NW);MP("7t",(B+C)/2,NE);
</asy></center>
 
<cmath>\begin{align*}(7t)^2 &= (8t)^2 + 100^2 - 2 \cdot 8t \cdot 100 \cdot \cos 60^\circ\\
0 &= 15t^2 - 800t + 10000 = 3t^2 - 160t + 2000\\
t &= \frac{160 \pm \sqrt{160^2 - 4\cdot 3 \cdot 2000}}{6} = 20, \frac{100}{3}.\end{align*}</cmath>
 
Since we are looking for the earliest possible intersection, <math>20</math> seconds are needed. Thus, <math>8 \cdot 20 = \boxed{160}</math> meters is the solution.
 
Alternatively, we can drop an altitude from <math>C</math> and arrive at the same answer.
 
== Solution 2 ==
<center><asy>
draw((0,0)--(11,0)--(7,14)--cycle);
draw((7,14)--(11,28));
draw((11,28)--(11,0));
label("$A$",(-1,-1),N);
label("$B$",(12,-1),N);
label("$P$",(6,15),N);
label("$B'$",(12,29),N);
draw((-10,14)--(20,14));
label("$X$",(12.5,15),N);
draw((7,0)--(7,14),dashed);
label("$Y$",(7,-4),N);
draw((6,0)--(6,1));
draw((6,1)--(7,1));
draw((11,13)--(10,13));
draw((10,13)--(10,14));
label("$60^{\circ}$",(4,0.5),N);
</asy></center>
 
Let <math>P</math> be the point of intersection between the skaters, Allie and Billie. We can draw a line that goes through <math>P</math> and is parallel to <math>\overline{AB}</math>. Letting this line be the <math>x</math>-axis, we can reflect <math>B</math> over the <math>x</math>-axis to get <math>B'</math>. As reflections preserve length, <math>B'X = XB</math>.
 
We then draw lines <math>BB'</math> and <math>PB'</math>. We can let the foot of the perpendicular from <math>P</math> to <math>BB'</math> be <math>X</math>, and we can let the foot of the perpendicular from <math>P</math> to <math>AB</math> be <math>Y</math>. In doing so, we have constructed rectangle <math>PXBY</math>.
 
By <math>d=rt</math>, we have <math>AP = 8t</math> and <math>PB = PB' = 7t</math>, where <math>t</math> is the number of seconds it takes the skaters to meet. Furthermore, we have <math>30-60-90</math> triangle <math>PAY</math>, so <math>AY = 4t</math>, and <math>PY = 4t\sqrt{3}</math>. Since we have <math>PY = XB = B'X</math>, <math>B'X = 4t\sqrt{3}</math>. By Pythagoras, <math>PX = t</math>.
 
As <math>PXBY</math> is a rectangle, <math>PX = YB</math>. Thus <math>AY + YB = AB \Rightarrow AY + PX = AB</math>, so we get <math>4t + t = 100</math>. Solving for <math>t</math>, we find <math>t = 20</math>.
 
Our answer, <math>AP</math>, is equivalent to <math>8t</math>. Thus, <math>AP = 8 \cdot 20 = \boxed{160}</math>.
 
==Solution 3==
 
We can define <math>x</math> to be the time elapsed since both Allie and Billie moved away from points <math>A</math> and <math>B</math> respectfully. Also, set the point of intersection to be <math>M</math>. Then we can produce the following diagram:
 
<asy>
draw((0,0)--(100,0)--(80,139)--cycle);
label("8x",(0,0)--(80,139),NW);
label("7x",(100,0)--(80,139),NE);
label("100",(0,0)--(100,0),S);
dot((0,0));
label("A",(0,0),S);
dot((100,0));
label("B",(100,0),S);
dot((80,139));
label("M",(80,139),N);
</asy>
 
Now, if we drop an altitude from point<math>M</math>, we get :
 
<asy>
size(300); draw((0,0)--(100,0)--(80,139)--cycle);
label("8x",(0,0)--(80,139),NW);
label("7x",(100,0)--(80,139),NE);


== Solution ==
dot((0,0));
{{solution}}
label("A",(0,0),S);
dot((100,0));
label("B",(100,0),SE);
dot((80,139));
label("M",(80,139),N);
draw((80,139)--(80,0),dashed);
label("4x",(0,0)--(80,0),S);
label("100-4x",(80,0)--(100,0),S);
label("$4x \sqrt{3}$",(80,139)--(80,0),W);
label("$60^{\circ}$", (3,1), NE);
</asy>
 
We know this from the <math>30-60-90</math> triangle that is formed. From this we get that:
<cmath>(7x)^2 = (4 \sqrt{3} x)^2 + (100-4x)^2</cmath>
 
<cmath>\Longrightarrow 49x^2 - 48x^2 = x^2 = (100-4x)^2</cmath>
 
<cmath>\Longrightarrow 0=(100-4x)^2 - x^2 = (100-3x)(100-5x)</cmath>.
 
Therefore, we get that <math>x = \frac{100}{3}</math> or <math>x = 20</math>. Since <math> 20< \frac{100}{3}</math>, we have that <math>x=20</math> (since the problem asks for the quickest possible meeting point), so the distance Allie travels before meeting Billie would be
<math>8 \cdot x = 8 \cdot 20 = \boxed{160}</math> meters.
 
~qwertysri987
 
== Solution 4 ==
 
<asy>
draw((0,0)--(100,0)--(80,139)--cycle);
label("8x",(0,0)--(80,139),NW);
label("7x",(100,0)--(80,139),NE);
label("100",(0,0)--(100,0),S);
dot((0,0));
label("A",(0,0),S);
dot((100,0));
label("B",(100,0),S);
dot((80,139));
label("M",(80,139),N);
draw((80,139)--(80,0),dashed); // Altitude MP
label("$P$",(80,0),S); // Label for point P
draw(rightanglemark((80,0),(80,139),(100,0))); // Right angle mark
</asy>
 
Drop the altitude from <math>M</math> to <math>AB</math>, and call it <math>P</math>. <math>\triangle AMP</math> is a <math>30-60-90</math> triangle, so <math>AP = 4t</math> and <math>MP = 4\sqrt{3}t</math>, and by the Pythagorean theorem on <math>\triangle MPB</math>, <math>PB = t</math>. <math>AP + BP = AB</math>, so <math>t=20</math>. Therefore, <math>8t = \boxed{160}</math>.
~~Disphenoid_lover


== See also ==
== See also ==
* [[1989 AIME Problems/Problem 7|Next Problem]]
{{AIME box|year=1989|num-b=5|num-a=7}}
* [[1989 AIME Problems/Problem 5|Previous Problem]]
 
* [[1989 AIME Problems]]
[[Category:Intermediate Geometry Problems]]
{{MAA Notice}}

Latest revision as of 14:08, 14 May 2024

Problem

Two skaters, Allie and Billie, are at points $A$ and $B$, respectively, on a flat, frozen lake. The distance between $A$ and $B$ is $100$ meters. Allie leaves $A$ and skates at a speed of $8$ meters per second on a straight line that makes a $60^\circ$ angle with $AB$. At the same time Allie leaves $A$, Billie leaves $B$ at a speed of $7$ meters per second and follows the straight path that produces the earliest possible meeting of the two skaters, given their speeds. How many meters does Allie skate before meeting Billie?

[asy] pointpen=black; pathpen=black+linewidth(0.7);  pair A=(0,0),B=(10,0),C=6*expi(pi/3); D(B--A); D(A--C,EndArrow); MP("A",A,SW);MP("B",B,SE);MP("60^{\circ}",A+(0.3,0),NE);MP("100",(A+B)/2); [/asy]

Solution

Label the point of intersection as $C$. Since $d = rt$, $AC = 8t$ and $BC = 7t$. According to the law of cosines,

[asy] pointpen=black; pathpen=black+linewidth(0.7);  pair A=(0,0),B=(10,0),C=16*expi(pi/3); D(B--A); D(A--C); D(B--C,dashed); MP("A",A,SW);MP("B",B,SE);MP("C",C,N);MP("60^{\circ}",A+(0.3,0),NE);MP("100",(A+B)/2);MP("8t",(A+C)/2,NW);MP("7t",(B+C)/2,NE); [/asy]

\begin{align*}(7t)^2 &= (8t)^2 + 100^2 - 2 \cdot 8t \cdot 100 \cdot \cos 60^\circ\\ 0 &= 15t^2 - 800t + 10000 = 3t^2 - 160t + 2000\\ t &= \frac{160 \pm \sqrt{160^2 - 4\cdot 3 \cdot 2000}}{6} = 20, \frac{100}{3}.\end{align*}

Since we are looking for the earliest possible intersection, $20$ seconds are needed. Thus, $8 \cdot 20 = \boxed{160}$ meters is the solution.

Alternatively, we can drop an altitude from $C$ and arrive at the same answer.

Solution 2

[asy] draw((0,0)--(11,0)--(7,14)--cycle); draw((7,14)--(11,28)); draw((11,28)--(11,0)); label("$A$",(-1,-1),N); label("$B$",(12,-1),N); label("$P$",(6,15),N); label("$B'$",(12,29),N); draw((-10,14)--(20,14)); label("$X$",(12.5,15),N); draw((7,0)--(7,14),dashed); label("$Y$",(7,-4),N); draw((6,0)--(6,1)); draw((6,1)--(7,1)); draw((11,13)--(10,13)); draw((10,13)--(10,14)); label("$60^{\circ}$",(4,0.5),N); [/asy]

Let $P$ be the point of intersection between the skaters, Allie and Billie. We can draw a line that goes through $P$ and is parallel to $\overline{AB}$. Letting this line be the $x$-axis, we can reflect $B$ over the $x$-axis to get $B'$. As reflections preserve length, $B'X = XB$.

We then draw lines $BB'$ and $PB'$. We can let the foot of the perpendicular from $P$ to $BB'$ be $X$, and we can let the foot of the perpendicular from $P$ to $AB$ be $Y$. In doing so, we have constructed rectangle $PXBY$.

By $d=rt$, we have $AP = 8t$ and $PB = PB' = 7t$, where $t$ is the number of seconds it takes the skaters to meet. Furthermore, we have $30-60-90$ triangle $PAY$, so $AY = 4t$, and $PY = 4t\sqrt{3}$. Since we have $PY = XB = B'X$, $B'X = 4t\sqrt{3}$. By Pythagoras, $PX = t$.

As $PXBY$ is a rectangle, $PX = YB$. Thus $AY + YB = AB \Rightarrow AY + PX = AB$, so we get $4t + t = 100$. Solving for $t$, we find $t = 20$.

Our answer, $AP$, is equivalent to $8t$. Thus, $AP = 8 \cdot 20 = \boxed{160}$.

Solution 3

We can define $x$ to be the time elapsed since both Allie and Billie moved away from points $A$ and $B$ respectfully. Also, set the point of intersection to be $M$. Then we can produce the following diagram:

[asy] draw((0,0)--(100,0)--(80,139)--cycle); label("8x",(0,0)--(80,139),NW); label("7x",(100,0)--(80,139),NE); label("100",(0,0)--(100,0),S); dot((0,0)); label("A",(0,0),S); dot((100,0)); label("B",(100,0),S); dot((80,139)); label("M",(80,139),N); [/asy]

Now, if we drop an altitude from point$M$, we get :

[asy] size(300); draw((0,0)--(100,0)--(80,139)--cycle); label("8x",(0,0)--(80,139),NW); label("7x",(100,0)--(80,139),NE);  dot((0,0)); label("A",(0,0),S); dot((100,0)); label("B",(100,0),SE); dot((80,139)); label("M",(80,139),N); draw((80,139)--(80,0),dashed); label("4x",(0,0)--(80,0),S); label("100-4x",(80,0)--(100,0),S); label("$4x \sqrt{3}$",(80,139)--(80,0),W); label("$60^{\circ}$", (3,1), NE); [/asy]

We know this from the $30-60-90$ triangle that is formed. From this we get that: \[(7x)^2 = (4 \sqrt{3} x)^2 + (100-4x)^2\]

\[\Longrightarrow 49x^2 - 48x^2 = x^2 = (100-4x)^2\]

\[\Longrightarrow 0=(100-4x)^2 - x^2 = (100-3x)(100-5x)\].

Therefore, we get that $x = \frac{100}{3}$ or $x = 20$. Since $20< \frac{100}{3}$, we have that $x=20$ (since the problem asks for the quickest possible meeting point), so the distance Allie travels before meeting Billie would be $8 \cdot x = 8 \cdot 20 = \boxed{160}$ meters.

~qwertysri987

Solution 4

[asy] draw((0,0)--(100,0)--(80,139)--cycle); label("8x",(0,0)--(80,139),NW); label("7x",(100,0)--(80,139),NE); label("100",(0,0)--(100,0),S); dot((0,0)); label("A",(0,0),S); dot((100,0)); label("B",(100,0),S); dot((80,139)); label("M",(80,139),N); draw((80,139)--(80,0),dashed); // Altitude MP label("$P$",(80,0),S); // Label for point P draw(rightanglemark((80,0),(80,139),(100,0))); // Right angle mark [/asy]

Drop the altitude from $M$ to $AB$, and call it $P$. $\triangle AMP$ is a $30-60-90$ triangle, so $AP = 4t$ and $MP = 4\sqrt{3}t$, and by the Pythagorean theorem on $\triangle MPB$, $PB = t$. $AP + BP = AB$, so $t=20$. Therefore, $8t = \boxed{160}$.

~~Disphenoid_lover

See also

1989 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America.