1991 IMO Problems/Problem 5: Difference between revisions
| (38 intermediate revisions by 2 users not shown) | |||
| Line 2: | Line 2: | ||
Let <math> \,ABC\,</math> be a triangle and <math> \,P\,</math> an interior point of <math> \,ABC\,</math>. Show that at least one of the angles <math> \,\angle PAB,\;\angle PBC,\;\angle PCA\,</math> is less than or equal to <math> 30^{\circ }</math>. | Let <math> \,ABC\,</math> be a triangle and <math> \,P\,</math> an interior point of <math> \,ABC\,</math>. Show that at least one of the angles <math> \,\angle PAB,\;\angle PBC,\;\angle PCA\,</math> is less than or equal to <math> 30^{\circ }</math>. | ||
== Solution == | == Solution 1 == | ||
Let <math>A_{1}</math> , <math>A_{2}</math>, and <math>A_{3}</math> be <math>\ | Let <math>A_{1}</math> , <math>A_{2}</math>, and <math>A_{3}</math> be <math>\angle CAB</math>, <math>\angle ABC</math>, <math>\angle BCA</math>, respectively. | ||
Let <math>\alpha_{1}</math> , <math>\alpha_{2}</math>, and <math>\alpha_{3}</math> be <math>\ | Let <math>\alpha_{1}</math> , <math>\alpha_{2}</math>, and <math>\alpha_{3}</math> be <math>\angle PAB</math>, <math>\angle PBC</math>, <math>\angle PCA</math>, respcetively. | ||
Using law of sines on <math>\Delta PAB</math> we get: <math>\frac{\left| PA \right|}{sin(A_{2}-\alpha_{2})}=\frac{\left| PB \right|}{sin(\alpha_{1})}</math>, therefore, <math>\frac{\left| PA \right|}{\left| PB \right|}=\frac{sin(A_{2}-\alpha_{2})}{sin(\alpha_{1})}</math> | Using law of sines on <math>\Delta PAB</math> we get: <math>\frac{\left| PA \right|}{sin(A_{2}-\alpha_{2})}=\frac{\left| PB \right|}{sin(\alpha_{1})}</math>, therefore, <math>\frac{\left| PA \right|}{\left| PB \right|}=\frac{sin(A_{2}-\alpha_{2})}{sin(\alpha_{1})}</math> | ||
| Line 20: | Line 20: | ||
<math>\prod_{i=1}^{3}\frac{sin(A_{i}-\alpha_{i})}{sin(\alpha_{i})}=1</math> | <math>\prod_{i=1}^{3}\frac{sin(A_{i}-\alpha_{i})}{sin(\alpha_{i})}=1</math> | ||
Using AM-GM we get: | |||
<math>\frac{1}{3}\sum_{i=1}^{3}\frac{sin(A_{i}-\alpha_{i})}{sin(\alpha_{i})}\ge \sqrt[3]{\prod_{i=1}^{3}\frac{sin(A_{i}-\alpha_{i})}{sin(\alpha_{i})}}</math> | |||
<math>\frac{1}{3}\sum_{i=1}^{3}\frac{sin(A_{i}-\alpha_{i})}{sin(\alpha_{i})}\ge 1</math> | |||
<math>\sum_{i=1}^{3}\frac{sin(A_{i}-\alpha_{i})}{sin(\alpha_{i})}\ge 3</math>. [Inequality 1] | |||
<math>\sum_{i=1}^{3}\frac{sin(A_{i})cos(\alpha_{i})-cos(A_{i})sin(\alpha_{i})}{sin(\alpha_{i})}\ge 3</math> | |||
<math>\sum_{i=1}^{3}\left[ sin(A_{i})cot(\alpha_{i})-cos(A_{i})\right]\ge 3</math> | |||
Note that for <math>0<\alpha_{i}<180^{\circ}</math>, <math>cot(\alpha_{i})</math> decreases with increasing <math>\alpha_{i}</math> and fixed <math>A_{i}</math> | |||
Therefore, <math>\left[ sin(A_{i})cot(\alpha_{i})-cos(A_{i})\right]</math> decreases with increasing <math>\alpha_{i}</math> and fixed <math>A_{i}</math> | |||
From trigonometric identity: | |||
<math>sin(x)+sin(y)=2sin\left( \frac{x+y}{2} \right)cos\left( \frac{x-y}{2} \right)</math>, | |||
since <math>-1\le cos\left( \frac{x-y}{2} \right) \le 1</math>, then: | |||
<math>sin(x)+sin(y) \le 2sin\left( \frac{x+y}{2} \right)</math> | |||
Therefore, | |||
<math>sin(A_{1}-30^{\circ})+sin(A_{2}-30^{\circ}) \le 2sin\left( \frac{A_{1}+A_{2}-60^{\circ}}{2} \right)</math> | |||
and also, | |||
<math>sin(A_{3}-30^{\circ})+sin(30^{\circ}) \le 2sin\left( \frac{A_{3}}{2} \right)</math> | |||
Adding these two inequalities we get: | |||
<math>sin(30^{\circ})+\sum_{i=1}^{3}sin(A_{i}-30^{\circ})\le 2\left[ sin\left( \frac{A_{1}+A_{2}-60^{\circ}}{2} \right)+sin\left( \frac{A_{3}}{2} \right) \right]</math> | |||
<math>\frac{1}{2}+\sum_{i=1}^{3}sin(A_{i}-30^{\circ})\le 2\left[ 2sin\left( \frac{A_{1}+A_{2}+A_{3}-60^{\circ}}{4} \right) \right]</math> | |||
<math>\frac{1}{2}+\sum_{i=1}^{3}sin(A_{i}-30^{\circ})\le 2\left[ 2sin\left( \frac{180^{\circ}-60^{\circ}}{4} \right) \right]</math> | |||
<math>\frac{1}{2}+\sum_{i=1}^{3}sin(A_{i}-30^{\circ})\le 4sin\left( 30^{\circ} \right)</math> | |||
<math>\sum_{i=1}^{3}sin(A_{i}-30^{\circ})\le \frac{3}{2}</math> | |||
<math>2\sum_{i=1}^{3}sin(A_{i}-30^{\circ})\le 3</math>. | |||
<math>\sum_{i=1}^{3}\frac{sin(A_{i}-30^{\circ})}{sin(30^{\circ})}\le 3</math>. [Inequality 2] | |||
Combining [Inequality 1] and [Inequality 2] we see the following: | |||
<math>\sum_{i=1}^{3}\frac{sin(A_{i}-30^{\circ})}{sin(30^{\circ})}\le \sum_{i=1}^{3}\frac{sin(A_{i}-\alpha_{i})}{sin(\alpha_{i})}</math> | |||
This implies that for at least one of the values of <math>i=1</math>,<math>2</math>,or <math>3</math>, the following is true: | |||
<math>\frac{sin(A_{i}-30^{\circ})}{sin(30^{\circ})}\le \frac{sin(A_{i}-\alpha_{i})}{sin(\alpha_{i})}</math> | |||
or | |||
<math>\frac{sin(\alpha_{i})}{sin(A_{i}-\alpha_{i})}\le \frac{sin(30^{\circ})}{sin(A_{i}-30^{\circ})}</math> | |||
Which means that for at least one of the values of <math>i=1</math>,<math>2</math>,or <math>3</math>, the following is true: | |||
<math>\alpha_{i} \le 30^{\circ}</math> | |||
Therefore, at least one of the angles <math> \,\angle PAB,\;\angle PBC,\;\angle PCA\,</math> is less than or equal to <math> 30^{\circ }</math>. | |||
~Tomas Diaz, orders@tomasdiaz.com | |||
{{alternate solutions}} | {{alternate solutions}} | ||
== Solution 2 == | |||
At least one of <math>\angle ABC, \angle BCA, \angle CAB \ge 60^\circ</math>. Without loss of generality, assume that <math>\angle BCA \ge 60^\circ</math> | |||
If <math>\angle PAB > 30^\circ</math> and <math>\angle PBC > 30^\circ</math> | |||
Draw a circle <math>R</math> centered at <math>O</math> and passing through <math>A, P, B</math>. Since <math>P</math> is an interior point of <math>\triangle ABC</math>, thus <math>C</math> is outside the circle <math>R</math> | |||
Draw two lines <math>CD, CE</math> passing through <math>C</math> and tangent to <math>R</math>. Line <math>CD</math> intersect <math>R</math> at <math>D</math>, and line <math>CE</math> intersect <math>R</math> at <math>E</math>. Choose <math>D</math> near <math>A</math>, and choose <math>E</math> near <math>B</math> | |||
Extends line <math>BC</math>, and intersect <math>R</math> at <math>F</math> other than <math>B</math> when <math>BC</math> is not tangent to <math>R</math>. If <math>BC</math> is tangent to <math>R</math>, we have <math>B = E</math> be the tangent point, and simply let <math>F = B = E</math> | |||
Draw the segment <math>OE</math>, and choose a point <math>G</math> on <math>R</math> such that <math>\angle GOE = 60^\circ</math>. There are two possible points, we choose <math>G</math> near point <math>P</math>. Draw segments <math>OG, GE</math>, thus <math>\triangle GOE</math> is an equilateral triangle | |||
Draw segments <math>OP, OC, OB, OF, PB, GC</math> | |||
<math>\angle OCE = \dfrac{1}{2} \angle DCE \ge \dfrac{1}{2} \angle BCA \ge 30^\circ</math>. Then we have <math>\angle COE = 90^\circ - \angle OCE \le 60^\circ = \angle GOE</math> | |||
<math>\angle POB = 2 \angle PAB > 60^\circ, \angle POF = 2 \angle PBC > 60^\circ</math>, since we have either <math>\angle POE \ge \angle POB</math> or <math>\angle POE \ge \angle POF</math>, thus <math>\angle POE > 60^\circ = \angle GOE</math> | |||
Thus we have <math>\angle COE \le \angle GOE < \angle POE</math>, then <math>\angle OCE \le \angle GCE < \angle PCE</math> | |||
Because <math>\angle GCE \ge \angle OCE \ge 30^\circ = \angle GEC</math>, thus <math>GC \le GE = OG</math>, and <math>\angle GCO \ge \angle GOC</math> | |||
Finally, <math>\angle PCA = \angle ACE - \angle PCE < \angle ACE - \angle GCE = \angle ACO - \angle GCO</math> | |||
Since <math>\angle ACO \le \angle DCO</math>, and <math>\angle GCO \ge \angle GOC</math>, thus we have <math>\angle PCA < \angle ACO - \angle GCO \le \angle DCO - \angle GOC = 90^\circ - \angle COE - \angle GOC = 90^\circ - \angle GOE = 30^\circ</math> | |||
We have proved that when <math>\angle PAB > 30^\circ</math> and <math>\angle PBC > 30^\circ</math>, the angle <math>\angle PCA</math> must be less than <math>30^\circ</math>. Thus at least one of <math>\angle PAB, \angle PBC, \angle PCA</math> should less than or equal to <math>30^\circ</math> | |||
~Joseph Tsai, mgtsai@gmail.com | |||
==See Also== | |||
{{IMO box|year=1991|num-b=4|num-a=6}} | |||
[[Category:Olympiad Geometry Problems]] | |||
[[Category:Geometry Problems]] | |||
Latest revision as of 04:01, 23 January 2024
Problem
Let
be a triangle and
an interior point of
. Show that at least one of the angles
is less than or equal to
.
Solution 1
Let
,
, and
be
,
,
, respectively.
Let
,
, and
be
,
,
, respcetively.
Using law of sines on
we get:
, therefore,
Using law of sines on
we get:
, therefore,
Using law of sines on
we get:
, therefore,
Multiply all three equations we get:
Using AM-GM we get:
. [Inequality 1]
Note that for
,
decreases with increasing
and fixed
Therefore,
decreases with increasing
and fixed
From trigonometric identity:
,
since
, then:
Therefore,
and also,
Adding these two inequalities we get:
.
. [Inequality 2]
Combining [Inequality 1] and [Inequality 2] we see the following:
This implies that for at least one of the values of
,
,or
, the following is true:
or
Which means that for at least one of the values of
,
,or
, the following is true:
Therefore, at least one of the angles
is less than or equal to
.
~Tomas Diaz, orders@tomasdiaz.com
Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.
Solution 2
At least one of
. Without loss of generality, assume that
If
and
Draw a circle
centered at
and passing through
. Since
is an interior point of
, thus
is outside the circle
Draw two lines
passing through
and tangent to
. Line
intersect
at
, and line
intersect
at
. Choose
near
, and choose
near
Extends line
, and intersect
at
other than
when
is not tangent to
. If
is tangent to
, we have
be the tangent point, and simply let
Draw the segment
, and choose a point
on
such that
. There are two possible points, we choose
near point
. Draw segments
, thus
is an equilateral triangle
Draw segments
. Then we have
, since we have either
or
, thus
Thus we have
, then
Because
, thus
, and
Finally,
Since
, and
, thus we have
We have proved that when
and
, the angle
must be less than
. Thus at least one of
should less than or equal to
~Joseph Tsai, mgtsai@gmail.com
See Also
| 1991 IMO (Problems) • Resources | ||
| Preceded by Problem 4 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Problem 6 |
| All IMO Problems and Solutions | ||