Exradius: Difference between revisions
m filling in the gap |
No edit summary |
||
| (One intermediate revision by the same user not shown) | |||
| Line 5: | Line 5: | ||
<math>r_1 = \frac{\Delta}{s-a} | <math>r_1 = \frac{\Delta}{s-a} | ||
= \sqrt{\frac{s(s-b)(s-c)}{s-a}} | = \sqrt{\frac{s(s-b)(s-c)}{s-a}} | ||
= 4R\sin{\frac{ | = 4R\sin{\frac{A}{2}}\cos{\frac{B}{2}}\cos{\frac{C}{2}} | ||
</math> | </math> | ||
(Johnson 1929, p. 189), where <math>R</math> is the circumradius. Let <math>r</math> be the inradius, then | (Johnson 1929, p. 189), where <math>R</math> is the circumradius. Let <math>r</math> be the inradius, then | ||
Latest revision as of 12:54, 21 January 2024
Excircle
The radius of an excircle. Let a triangle have exradius
(sometimes denoted
), opposite side of length
and angle
, area
, and semiperimeter
. Then
(Johnson 1929, p. 189), where
is the circumradius. Let
be the inradius, then
and
(Casey 1888, p. 65) and
Some fascinating formulas due to Feuerbach are
Reference:
Weisstein, Eric W. "Exradius." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Exradius.html