Art of Problem Solving

2009 AMC 10A Problems/Problem 17: Difference between revisions

Sophie8 (talk | contribs)
Tigertan (talk | contribs)
 
(12 intermediate revisions by 7 users not shown)
Line 45: Line 45:
From the [[Pythagorean theorem]] we have <math>BD=5</math>.
From the [[Pythagorean theorem]] we have <math>BD=5</math>.


Triangle <math>EAB</math> is similar to <math>DAB</math>, as they have the same angles. Segment <math>BA</math> is perpendicular to <math>DA</math>, meaning that angle <math>DAB</math> and <math>BAE</math> are right angles and congruent. Also, angle <math>DBE</math> is a right angle. Because it is a rectangle, angle <math>BDC</math> is congruent to <math>DBA</math> and angle <math>ADC</math> is also a right angle. By the transitive property:
Triangle <math>EAB</math> is similar to <math>BAD</math>, as they have the same angles. Segment <math>BA</math> is perpendicular to <math>DA</math>, meaning that angle <math>DAB</math> and <math>BAE</math> are right angles and congruent. Also, angle <math>DBE</math> is a right angle. Because it is a rectangle, angle <math>BDC</math> is congruent to <math>DBA</math> and angle <math>ADC</math> is also a right angle. By the transitive property:


<math>mADB + mBDC = mDBA + mABE</math>
<math>mADB + mBDC = mDBA + mABE</math>
Line 55: Line 55:
<math>mADB = mABE</math>
<math>mADB = mABE</math>


Next, because every triangle has a degree measure of 180, angle <math>E</math> and angle <math>DBA</math> are congruent.  
Next, because every triangle has a degree measure of <math>180</math>, angle <math>BEA</math> and angle <math>DBA</math> are similar.  




Line 66: Line 66:
=== Solution 2 ===
=== Solution 2 ===


Since <math>BD</math> is the altitude from <math>B</math> to <math>EF</math>, we can use the equation <math>BD^2 = EB\cdot BF</math>.  
Since <math>BD</math> is the altitude from <math>D</math> to <math>EF</math>, we can use the equation <math>BD^2 = EB\cdot BF</math>.  


Looking at the angles, we see that triangle <math>EAB</math> is similar to <math>DCB</math>. Because of this, <math>\frac{AB}{CB} = \frac{EB}{DB}</math>. From the given information and the [[Pythagorean theorem]], <math>AB=4</math>, <math>CB=3</math>, and <math>DB=5</math>. Solving gives <math>EB=20/3</math>.  
Looking at the angles, we see that triangle <math>BDE</math> is similar to <math>DCB</math>. Because of this, <math>\frac{AB}{CB} = \frac{EB}{DB}</math>. From the given information and the [[Pythagorean theorem]], <math>AB=4</math>, <math>CB=3</math>, and <math>DB=5</math>. Solving gives <math>EB=20/3</math>.  


We can use the above formula to solve for <math>BF</math>. <math>BD^2 = 20/3\cdot BF</math>. Solve to obtain <math>BF=15/4</math>.  
We can use the above formula to solve for <math>BF</math>. <math>BD^2 = 20/3\cdot BF</math>. Solve to obtain <math>BF=15/4</math>.  
Line 74: Line 74:
We now know <math>EB</math> and <math>BF</math>. <math>EF = EB+BF = \frac{20}3 + \frac{15}4 = \frac{80 + 45}{12} = \boxed{\frac{125}{12}}</math>.
We now know <math>EB</math> and <math>BF</math>. <math>EF = EB+BF = \frac{20}3 + \frac{15}4 = \frac{80 + 45}{12} = \boxed{\frac{125}{12}}</math>.


Solution 3
===Solution 3(Coordinate Bash)===
There is a better solution where we find EF directly instead of in parts (use similarity). The strategy is similar.
To keep things simple, we will use coordinates in only the first quadrant. The picture will look like the diagram above reflected over the <math>x</math>-axis.It is also worth noting the <math>F</math> will lie on the <math>x</math> axis and <math>E</math> on the <math>y</math>. Let <math>D</math> be the origin, <math>A(3,0)</math>, <math>C(4,0)</math>, and  <math>B(4,3)</math>. We can express segment <math>DB</math> as the line <math>y=\frac{3x}{4}</math>.
Since <math>EF</math> is perpendicular to <math>DB</math>, and we know that <math>(4,3)</math> lies on it, we can use this information to find that segment <math>EF</math>
is on the line <math>y=\frac{-4x}{3}+\frac{25}{3}</math>. Since <math>E</math> and <math>F</math> are on the <math>y</math> and <math>x</math> axis, respectively, we plug in <math>0</math> for <math>x</math>
and <math>y</math>, we find that point <math>E</math> is at <math>(0,\frac{25}{3})</math>, and point <math>F</math> is at <math>(\frac{25}{4},0)</math>. Applying the distance formula,
we obtain that <math>EF</math>= <math>\boxed{\frac{125}{12}}</math>.


== See Also ==
== See Also ==

Latest revision as of 20:14, 23 October 2023

Problem

Rectangle $ABCD$ has $AB=4$ and $BC=3$. Segment $EF$ is constructed through $B$ so that $EF$ is perpendicular to $DB$, and $A$ and $C$ lie on $DE$ and $DF$, respectively. What is $EF$?

$\mathrm{(A)}\ 9 \qquad \mathrm{(B)}\ 10 \qquad \mathrm{(C)}\ \frac {125}{12} \qquad \mathrm{(D)}\ \frac {103}{9} \qquad \mathrm{(E)}\ 12$

Solutions

Solution 1

The situation is shown in the picture below.

[asy] unitsize(0.6cm); defaultpen(0.8); pair A=(0,0), B=(4,0), C=(4,3), D=(0,3); pair EF=rotate(90)*(D-B); pair E=intersectionpoint( (0,-100)--(0,100), (B-100*EF)--(B+100*EF) ); pair F=intersectionpoint( (-100,3)--(100,3), (B-100*EF)--(B+100*EF) ); draw(A--B--C--D--cycle); draw(B--D, dashed); draw(E--F); draw(A--E, dashed); draw(C--F, dashed); label("$A$",A,W); label("$B$",B,SE); label("$C$",C,N); label("$D$",D,NW); label("$E$",E,SW); label("$F$",F,NE); label("$3$",A--D,W); label("$4$",C--D,N); [/asy]

From the Pythagorean theorem we have $BD=5$.

Triangle $EAB$ is similar to $BAD$, as they have the same angles. Segment $BA$ is perpendicular to $DA$, meaning that angle $DAB$ and $BAE$ are right angles and congruent. Also, angle $DBE$ is a right angle. Because it is a rectangle, angle $BDC$ is congruent to $DBA$ and angle $ADC$ is also a right angle. By the transitive property:

$mADB + mBDC = mDBA + mABE$

$mBDC = mDBA$

$mADB + mBDC = mBDC + mABE$

$mADB = mABE$

Next, because every triangle has a degree measure of $180$, angle $BEA$ and angle $DBA$ are similar.


Hence $BE/AB = DB/AD$, and therefore $BE = AB\cdot DB/AD = 20/3$.

Also triangle $CBF$ is similar to $ABD$. Hence $BF/BC = DB/AB$, and therefore $BF=BC\cdot DB / AB = 15/4$.

We then have $EF = EB+BF = \frac{20}3 + \frac{15}4 = \frac{80 + 45}{12} = \boxed{\frac{125}{12}}$.

Solution 2

Since $BD$ is the altitude from $D$ to $EF$, we can use the equation $BD^2 = EB\cdot BF$.

Looking at the angles, we see that triangle $BDE$ is similar to $DCB$. Because of this, $\frac{AB}{CB} = \frac{EB}{DB}$. From the given information and the Pythagorean theorem, $AB=4$, $CB=3$, and $DB=5$. Solving gives $EB=20/3$.

We can use the above formula to solve for $BF$. $BD^2 = 20/3\cdot BF$. Solve to obtain $BF=15/4$.

We now know $EB$ and $BF$. $EF = EB+BF = \frac{20}3 + \frac{15}4 = \frac{80 + 45}{12} = \boxed{\frac{125}{12}}$.

Solution 3(Coordinate Bash)

To keep things simple, we will use coordinates in only the first quadrant. The picture will look like the diagram above reflected over the $x$-axis.It is also worth noting the $F$ will lie on the $x$ axis and $E$ on the $y$. Let $D$ be the origin, $A(3,0)$, $C(4,0)$, and $B(4,3)$. We can express segment $DB$ as the line $y=\frac{3x}{4}$. Since $EF$ is perpendicular to $DB$, and we know that $(4,3)$ lies on it, we can use this information to find that segment $EF$ is on the line $y=\frac{-4x}{3}+\frac{25}{3}$. Since $E$ and $F$ are on the $y$ and $x$ axis, respectively, we plug in $0$ for $x$ and $y$, we find that point $E$ is at $(0,\frac{25}{3})$, and point $F$ is at $(\frac{25}{4},0)$. Applying the distance formula, we obtain that $EF$= $\boxed{\frac{125}{12}}$.

See Also

2009 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America.