Art of Problem Solving

2015 AMC 10A Problems/Problem 6: Difference between revisions

Alexwin0806 (talk | contribs)
Thestudyofeverything (talk | contribs)
 
(7 intermediate revisions by 4 users not shown)
Line 6: Line 6:
<math> \textbf{(A)}\ \frac{5}{4}\qquad\textbf{(B)}\ \frac{3}{2}\qquad\textbf{(C)}\ \frac{9}{5}\qquad\textbf{(D)}\ 2 \qquad\textbf{(E)}\ \frac{5}{2} </math>
<math> \textbf{(A)}\ \frac{5}{4}\qquad\textbf{(B)}\ \frac{3}{2}\qquad\textbf{(C)}\ \frac{9}{5}\qquad\textbf{(D)}\ 2 \qquad\textbf{(E)}\ \frac{5}{2} </math>


==Solution==
==Solution 1==


Let <math>a</math> be the bigger number and <math>b</math> be the smaller.
Let <math>a</math> be the bigger number and <math>b</math> be the smaller.
Line 12: Line 12:
<math>a + b = 5(a - b)</math>.
<math>a + b = 5(a - b)</math>.


Multiplying out gives <math>a + b = 5a - 5b</math> and rearranging gives 4a = 6b and then solving gives
Multiplying out gives <math>a + b = 5a - 5b</math> and rearranging gives <math>4a = 6b</math> and factorised into <math>2a = 3b</math> and then solving gives


<math>\frac{a}{b} = \frac32</math>, so the answer is <math>\boxed{\textbf{(B) }\frac32}</math>.
<math>\frac{a}{b} = \frac32</math>, so the answer is <math>\boxed{\textbf{(B) }\frac32}</math>.
==Solution 2==
Without loss of generality, let the two numbers be <math>3</math> and <math>2</math>, as they clearly satisfy the condition of the problem. The ratio of the larger to the smaller is <math>\boxed{\textbf{(B) }\frac32}</math>.
==Video Solution (CREATIVE THINKING)==
https://youtu.be/GLfDY92_td0
~Education, the Study of Everything
==Video Solution==
https://youtu.be/JLKoh-Nb0Os
~savannahsolver


==See Also==
==See Also==

Latest revision as of 22:05, 26 June 2023

The following problem is from both the 2015 AMC 12A #4 and 2015 AMC 10A #6, so both problems redirect to this page.

Problem

The sum of two positive numbers is $5$ times their difference. What is the ratio of the larger number to the smaller number?

$\textbf{(A)}\ \frac{5}{4}\qquad\textbf{(B)}\ \frac{3}{2}\qquad\textbf{(C)}\ \frac{9}{5}\qquad\textbf{(D)}\ 2 \qquad\textbf{(E)}\ \frac{5}{2}$

Solution 1

Let $a$ be the bigger number and $b$ be the smaller.

$a + b = 5(a - b)$.

Multiplying out gives $a + b = 5a - 5b$ and rearranging gives $4a = 6b$ and factorised into $2a = 3b$ and then solving gives

$\frac{a}{b} = \frac32$, so the answer is $\boxed{\textbf{(B) }\frac32}$.

Solution 2

Without loss of generality, let the two numbers be $3$ and $2$, as they clearly satisfy the condition of the problem. The ratio of the larger to the smaller is $\boxed{\textbf{(B) }\frac32}$.

Video Solution (CREATIVE THINKING)

https://youtu.be/GLfDY92_td0

~Education, the Study of Everything



Video Solution

https://youtu.be/JLKoh-Nb0Os

~savannahsolver

See Also

2015 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2015 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America.