2002 AMC 10A Problems/Problem 20: Difference between revisions
No edit summary |
|||
| (18 intermediate revisions by 8 users not shown) | |||
| Line 4: | Line 4: | ||
<math>\text{(A)}\ 5/4 \qquad \text{(B)}\ 4/3 \qquad \text{(C)}\ 3/2 \qquad \text{(D)}\ 5/3 \qquad \text{(E)}\ 2</math> | <math>\text{(A)}\ 5/4 \qquad \text{(B)}\ 4/3 \qquad \text{(C)}\ 3/2 \qquad \text{(D)}\ 5/3 \qquad \text{(E)}\ 2</math> | ||
< | ==Solution 1== | ||
pair A,B,C,D, | First we can draw an image. | ||
<asy> | |||
unitsize(0.8 cm); | |||
pair A, B, C, D, E, F, G, H, J; | |||
A = (0,0); | A = (0,0); | ||
B = ( | B = (1,0); | ||
C = 2 | C = (2,0); | ||
D = 3 | D = (3,0); | ||
E = (4,0); | |||
F = 5 | F = (5,0); | ||
G = (- | G = (-1.5,4); | ||
H = | H = extension(D, G, C, C + G - A); | ||
J = | J = extension(F, G, E, E + G - A); | ||
draw( | |||
draw( | draw(A--F--G--cycle); | ||
draw( | draw(B--G); | ||
label(" | draw(C--G); | ||
label(" | draw(D--G); | ||
label(" | draw(E--G); | ||
label(" | draw(C--H); | ||
label(" | draw(E--J); | ||
label(" | |||
label("</math> | label("$A$", A, SW); | ||
label("$B$", B, S); | |||
label("$C$", C, S); | |||
label("$D$", D, S); | |||
label("$E$", E, S); | |||
label("$F$", F, SE); | |||
label("$G$", G, NW); | |||
label("$H$", H, W); | |||
label("$J$", J, NE); | |||
</asy> | |||
Since <math>\overline{AG}</math> and <math>\overline{CH}</math> are parallel, triangles <math>\triangle GAD</math> and <math>\triangle HCD</math> are similar. Hence, <math>\frac{CH}{AG} = \frac{CD}{AD} = \frac{1}{3}</math>. | |||
Since <math>\overline{AG}</math> and <math>\overline{JE}</math> are parallel, triangles <math>\triangle GAF</math> and <math>\triangle JEF</math> are similar. Hence, <math>\frac{EJ}{AG} = \frac{EF}{AF} = \frac{1}{5}</math>. Therefore, <math>\frac{CH}{EJ} = \left(\frac{CH}{AG}\right)\div\left(\frac{EJ}{AG}\right) = \left(\frac{1}{3}\right)\div\left(\frac{1}{5}\right) = \boxed{\frac{5}{3}}</math>. The answer is <math>\boxed{(D) 5/3}</math>. | |||
==Solution 2== | |||
As angle F is clearly congruent to itself, we get from AA similarity, <math>\triangle AGF \sim \triangle EJF</math>; hence <math>\frac {AG}{JE} =5</math>. Similarly, <math>\frac {AG}{HC} = 3</math>. Thus, <math>\frac {HC}{JE}=\left(\frac{AG}{JE}\right)\left(\frac{HC}{AG}\right) = \boxed{\frac {5}{3}\Rightarrow \text{(D)}}</math>. | |||
==Solution== | ==Solution 3== | ||
Assume an arbitrary value of <math>AG=15</math> WLOG. <math>\overline{AG}</math> and <math>\overline{CH}</math> are parallel, so <math>\triangle GAD</math> and <math>\triangle HCD</math> are similar. So, <math>\frac{AD}{CD}=3=\frac{GA}{HC}</math> which means <math>HC=5</math>. By the same logic, <math>JE=3</math>, so <math>\frac{HC}{JE}=\frac{5}{3}</math>. | |||
==Video Solution== | |||
https://www.youtube.com/watch?v=AU2PJeMZ7R0 ~David | |||
==See Also== | ==See Also== | ||
Latest revision as of 21:15, 9 June 2023
Problem
Points
and
lie, in that order, on
, dividing it into five segments, each of length 1. Point
is not on line
. Point
lies on
, and point
lies on
. The line segments
and
are parallel. Find
.
Solution 1
First we can draw an image.
Since
and
are parallel, triangles
and
are similar. Hence,
.
Since
and
are parallel, triangles
and
are similar. Hence,
. Therefore,
. The answer is
.
Solution 2
As angle F is clearly congruent to itself, we get from AA similarity,
; hence
. Similarly,
. Thus,
.
Solution 3
Assume an arbitrary value of
WLOG.
and
are parallel, so
and
are similar. So,
which means
. By the same logic,
, so
.
Video Solution
https://www.youtube.com/watch?v=AU2PJeMZ7R0 ~David
See Also
| 2002 AMC 10A (Problems • Answer Key • Resources) | ||
| Preceded by Problem 19 |
Followed by Problem 21 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America.