2021 Fall AMC 10B Problems/Problem 6: Difference between revisions
MRENTHUSIASM (talk | contribs) |
mNo edit summary |
||
| (10 intermediate revisions by 5 users not shown) | |||
| Line 8: | Line 8: | ||
Let this positive integer be written as <math>p_1^{e_1}\cdot p_2^{e_2}</math>. The number of factors of this number is therefore <math>(e_1+1) \cdot (e_2+1)</math>, and this must equal 2021. The prime factorization of 2021 is <math>43 \cdot 47</math>, so <math>e_1+1 = 43 \implies e_1=42</math> and <math>e_2+1=47\implies e_2=46</math>. To minimize this integer, we set <math>p_1 = 3</math> and <math>p_2 = 2</math>. Then this integer is <math>3^{42} \cdot 2^{46} = 2^4 \cdot 2^{42} \cdot 3^{42} = 16 \cdot 6^{42}</math>. | Let this positive integer be written as <math>p_1^{e_1}\cdot p_2^{e_2}</math>. The number of factors of this number is therefore <math>(e_1+1) \cdot (e_2+1)</math>, and this must equal 2021. The prime factorization of 2021 is <math>43 \cdot 47</math>, so <math>e_1+1 = 43 \implies e_1=42</math> and <math>e_2+1=47\implies e_2=46</math>. To minimize this integer, we set <math>p_1 = 3</math> and <math>p_2 = 2</math>. Then this integer is <math>3^{42} \cdot 2^{46} = 2^4 \cdot 2^{42} \cdot 3^{42} = 16 \cdot 6^{42}</math>. | ||
Now <math>m=16</math> and <math>k=42</math> so <math>m+k = 16 + 42 | Now <math>m=16</math> and <math>k=42</math> so <math>m+k = 16 + 42 = \boxed{\textbf{(B) }58}</math> | ||
~KingRavi | ~KingRavi | ||
==Solution 2== | ==Solution 2== | ||
Recall that <math>6^k</math> can be written as <math>2^k \cdot 3^k</math>. Since we want the integer to have <math>2021</math> divisors, we must have it in the form <math>p_1^{42} \cdot p_2^{46}</math>, where <math>p_1</math> and <math>p_2</math> are prime numbers. Therefore, we want <math>p_1</math> to be <math>3</math> and <math>p_2</math> to be <math>2</math>. To make up the remaining <math>2^4</math>, we multiply <math>2^{42} \cdot 3^{42}</math> by <math>m</math>, which is <math>2^4</math> which is <math>16</math>. Therefore, we have <math>42 + 16 = \boxed {(B) 58}</math> | Recall that <math>6^k</math> can be written as <math>2^k \cdot 3^k</math>. Since we want the integer to have <math>2021</math> divisors, we must have it in the form <math>p_1^{42} \cdot p_2^{46}</math>, where <math>p_1</math> and <math>p_2</math> are prime numbers. Therefore, we want <math>p_1</math> to be <math>3</math> and <math>p_2</math> to be <math>2</math>. To make up the remaining <math>2^4</math>, we multiply <math>2^{42} \cdot 3^{42}</math> by <math>m</math>, which is <math>2^4</math> which is <math>16</math>. Therefore, we have <math>42 + 16 = \boxed{\textbf{(B) }58}</math> | ||
~Arcticturn | ~Arcticturn | ||
| Line 32: | Line 32: | ||
https://youtu.be/p9_RH4s-kBA?t=530 | https://youtu.be/p9_RH4s-kBA?t=530 | ||
==Video Solution== | |||
https://youtu.be/bRohyPen8ik | |||
~Education, the Study of Everything | |||
==Video Solution by WhyMath== | |||
https://youtu.be/bErxcXXwWkw | |||
~savannahsolver | |||
==Video Solution by TheBeautyofMath== | |||
https://youtu.be/RyN-fKNtd3A | |||
~IceMatrix | |||
==See Also== | ==See Also== | ||
{{AMC10 box|year=2021 Fall|ab=B|num-a=7|num-b=5}} | {{AMC10 box|year=2021 Fall|ab=B|num-a=7|num-b=5}} | ||
{{MAA Notice}} | {{MAA Notice}} | ||
Latest revision as of 23:55, 29 December 2022
Problem
The least positive integer with exactly
distinct positive divisors can be written in the form
, where
and
are integers and
is not a divisor of
. What is
Solution 1
Let this positive integer be written as
. The number of factors of this number is therefore
, and this must equal 2021. The prime factorization of 2021 is
, so
and
. To minimize this integer, we set
and
. Then this integer is
.
Now
and
so
~KingRavi
Solution 2
Recall that
can be written as
. Since we want the integer to have
divisors, we must have it in the form
, where
and
are prime numbers. Therefore, we want
to be
and
to be
. To make up the remaining
, we multiply
by
, which is
which is
. Therefore, we have
~Arcticturn
Solution 3
If a number has prime factorization
, then the number of distinct positive divisors of this number is
.
We have
.
Hence, if a number
has 2021 distinct positive divisors, then
takes one of the following forms:
,
.
Therefore, the smallest
is
.
Therefore, the answer is
.
~Steven Chen (www.professorchenedu.com)
Video Solution by Interstigation
https://youtu.be/p9_RH4s-kBA?t=530
Video Solution
~Education, the Study of Everything
Video Solution by WhyMath
~savannahsolver
Video Solution by TheBeautyofMath
~IceMatrix
See Also
| 2021 Fall AMC 10B (Problems • Answer Key • Resources) | ||
| Preceded by Problem 5 |
Followed by Problem 7 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America.