Octagon: Difference between revisions
m i can't seem to eliminate the double root in the circumradius .. |
No edit summary |
||
| (3 intermediate revisions by 2 users not shown) | |||
| Line 4: | Line 4: | ||
Each internal [[angle]] of a [[Regular polygon | regular]] octagon measures 135 [[degree (geometry) | degrees]], so the sum of the angles is <math>1080^{\circ}</math>. | Each internal [[angle]] of a [[Regular polygon | regular]] octagon measures 135 [[degree (geometry) | degrees]], so the sum of the angles is <math>1080^{\circ}</math>. | ||
[[Area]]: <math>2s^2(\sqrt{2} | [[Area]]: <math>2s^2(1 + \sqrt{2})</math> | ||
[[Apothem]]: <math>\frac{s(\ | [[Apothem]]: <math>\frac{s(1+ \sqrt2 )}{2}</math> | ||
[[Inradius]]: <math>\frac{s(\ | [[Inradius]]: <math>\frac{s(1+ \sqrt2 )}{2}</math> | ||
[[Circumradius]]: <math>s\sqrt{ | [[Circumradius]]: <math>\frac{s\sqrt{4+2\sqrt{2}}}{2}</math> | ||
{{stub}} | {{stub}} | ||
[[Category:Geometry]] | |||