2003 AIME II Problems/Problem 7: Difference between revisions
m →Problem |
|||
| (13 intermediate revisions by 9 users not shown) | |||
| Line 1: | Line 1: | ||
__TOC__ | |||
== Problem == | == Problem == | ||
Find the area of rhombus <math>ABCD</math> given that the | Find the area of rhombus <math>ABCD</math> given that the circumradii of triangles <math>ABD</math> and <math>ACD</math> are <math>12.5</math> and <math>25</math>, respectively. | ||
== Solution == | == Solution == | ||
The diagonals of the rhombus perpendicularly bisect each other. Call half of diagonal BD a and half of diagonal AC b. The length of the four sides of the rhombus is <math>\sqrt{a^2+b^2}</math>. The area of any triangle can be expressed as | The diagonals of the rhombus perpendicularly bisect each other. Call half of diagonal BD <math>a</math> and half of diagonal AC <math>b</math>. The length of the four sides of the rhombus is <math>\sqrt{a^2+b^2}</math>. | ||
The area of any triangle can be expressed as <math>\frac{a\cdot b\cdot c}{4R}</math>, where <math>a</math>, <math>b</math>, and <math>c</math> are the sides and <math>R</math> is the circumradius. Thus, the area of <math>\triangle ABD</math> is <math>ab=2a(a^2+b^2)/(4\cdot12.5)</math>. Also, the area of <math>\triangle ABC</math> is <math>ab=2b(a^2+b^2)/(4\cdot25)</math>. Setting these two expressions equal to each other and simplifying gives <math>b=2a</math>. Substitution yields <math>a=10</math> and <math>b=20</math>, so the area of the rhombus is <math>20\cdot40/2=\boxed{400}</math>. | |||
==Solution 2== | |||
Let <math>\theta=\angle BDA</math>. Let <math>AB=BC=CD=x</math>. By the extended law of sines, | |||
<cmath>\frac{x}{\sin\theta}=25</cmath> | |||
Since <math>AC\perp BD</math>, <math>\angle CAD=90-\theta</math>, so | |||
<cmath>\frac{x}{\sin(90-\theta)=\cos\theta}=50</cmath> | |||
Hence <math>x=25\sin\theta=50\cos\theta</math>. Solving <math>\tan\theta=2</math>, <math>\sin\theta=\frac{2}{\sqrt{5}}, \cos\theta=\frac{1}{\sqrt{5}}</math>. Thus | |||
<cmath>x=25\frac{2}{\sqrt{5}}\implies x^2=500</cmath> | |||
The height of the rhombus is <math>x\sin(2\theta)=2x\sin\theta\cos\theta</math>, so we want | |||
<cmath>2x^2\sin\theta\cos\theta=\boxed{400}</cmath> | |||
~yofro | |||
==Video Solution by Sal Khan== | |||
https://www.youtube.com/watch?v=jpKjXtywTlQ&list=PLSQl0a2vh4HCtW1EiNlfW_YoNAA38D0l4&index=16 - AMBRIGGS | |||
== See also == | == See also == | ||
{{AIME box|year=2003|n=II|num-b=6|num-a=8}} | {{AIME box|year=2003|n=II|num-b=6|num-a=8}} | ||
[[Category: Intermediate Geometry Problems]] | |||
{{MAA Notice}} | |||
Latest revision as of 08:56, 16 September 2022
Problem
Find the area of rhombus
given that the circumradii of triangles
and
are
and
, respectively.
Solution
The diagonals of the rhombus perpendicularly bisect each other. Call half of diagonal BD
and half of diagonal AC
. The length of the four sides of the rhombus is
.
The area of any triangle can be expressed as
, where
,
, and
are the sides and
is the circumradius. Thus, the area of
is
. Also, the area of
is
. Setting these two expressions equal to each other and simplifying gives
. Substitution yields
and
, so the area of the rhombus is
.
Solution 2
Let
. Let
. By the extended law of sines,
Since
,
, so
Hence
. Solving
,
. Thus
The height of the rhombus is
, so we want
~yofro
Video Solution by Sal Khan
https://www.youtube.com/watch?v=jpKjXtywTlQ&list=PLSQl0a2vh4HCtW1EiNlfW_YoNAA38D0l4&index=16 - AMBRIGGS
See also
| 2003 AIME II (Problems • Answer Key • Resources) | ||
| Preceded by Problem 6 |
Followed by Problem 8 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America.