2008 UNCO Math Contest II Problems/Problem 9: Difference between revisions
Created page with "== Problem == Let <math>C_n = 1+10 +10^2 + \cdots + 10^{n-1}.</math> (a) Prove that <math> 9C_n = 10^n -1.</math> (b) Prove that <math>(3C_3+ 2)^2 =112225.</math> (c) Prove t..." |
Hastapasta (talk | contribs) |
||
| (4 intermediate revisions by 4 users not shown) | |||
| Line 12: | Line 12: | ||
== Solution == | == Solution == | ||
(a) We know that <math>C_n</math> is a geometric series, so we can define it explicitly as follows | |||
<math>C_n=\frac{10^n-1}{9}</math> | |||
multiplying both sides by 9 yields our answer. | |||
(b) We have | |||
<math>(3*111+2)^2=335^2</math>, | |||
yielding <math>112,225</math>. | |||
(c) We say that the nth member of the sequence equals <math>(3*C_n+2)^2</math>. Expanding yields | |||
<math>(3*\frac{10^n-1}{9}+2)^2</math>, | |||
<math>=(\frac{10^n+5}{3})^2</math>, | |||
<math>=\frac{10^{2n}}{9}+\frac{10^{n+1}}{9}+\frac{25}{9}</math>. | |||
Dividing each term separately, we know that the first term will add <math>2n</math> <math>1</math>s and <math>\frac{1}{9}</math>, the second term will add <math>n+1</math> <math>1</math>s and <math>\frac{1}{9}</math>, and the third will add <math>\frac{25}{9}</math>, giving | |||
<math>\overbrace{11...11}^{2n}+\overbrace{11...11}^{n+1}+\frac{27}{9}</math>, | |||
<math>\overbrace{11...11}^{n-1}\overbrace{22...22}^{n}5</math>, | |||
which is exactly what we wanted. | |||
(a) <math>\frac{10^n-1}{9}</math> (b) <math>112,225</math> (c) <math>11,122,225</math> | |||
== Solution 2 == | |||
(a) <math>9=10-1</math>. Multiply these two binomials and we have reach our answer (remember the formula -- it's like Difference of Cubes) | |||
(b)<math>C_3=111</math>. The original expression is equal to <math>\boxed{112225}</math>. (Just brute force this out). | |||
(c) Now notice that each term in the sequence is <math>(3C_n)^2</math>. As seen in part (a), we see that <math>C_n=\frac{10^n-1}{9}</math>. Follow Solution 1 above. | |||
~hastapasta | |||
== See Also == | == See Also == | ||
Latest revision as of 11:30, 27 April 2022
Problem
Let
(a) Prove that
(b) Prove that
(c) Prove that each term in the following sequence is a perfect square:
Solution
(a) We know that
is a geometric series, so we can define it explicitly as follows
multiplying both sides by 9 yields our answer.
(b) We have
,
yielding
.
(c) We say that the nth member of the sequence equals
. Expanding yields
,
,
.
Dividing each term separately, we know that the first term will add
s and
, the second term will add
s and
, and the third will add
, giving
,
,
which is exactly what we wanted.
(a)
(b)
(c)
Solution 2
(a)
. Multiply these two binomials and we have reach our answer (remember the formula -- it's like Difference of Cubes)
(b)
. The original expression is equal to
. (Just brute force this out).
(c) Now notice that each term in the sequence is
. As seen in part (a), we see that
. Follow Solution 1 above.
~hastapasta
See Also
| 2008 UNCO Math Contest II (Problems • Answer Key • Resources) | ||
| Preceded by Problem 8 |
Followed by Problem 10 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 | ||
| All UNCO Math Contest Problems and Solutions | ||