2021 WSMO Speed Round Problems/Problem 10: Difference between revisions
Created page with "==Problem== Find the remainder when <math>\underbrace{2021^{2022^{\ldots^{2022^{2021}}}}}_{2021\text{ } 2021\text{'}s}\cdot\underbrace{2022^{2021^{\ldots^{2021^{2022}}}}}_{202..." |
|||
| Line 3: | Line 3: | ||
==Solution== | ==Solution== | ||
First, note that <math>\underbrace{2021^{2022^{\ldots^{2022^{2021}}}}}_{2021\text{ } 2021\text{'}s}\cdot\underbrace{2022^{2021^{\ldots^{2021^{2022}}}}}_{2022\text{ }2022\text{'}s}\equiv\underbrace{8^{2022^{\ldots^{2022^{2021}}}}}_{2021\text{ } 2021\text{'}s}\cdot\underbrace{9^{2021^{\ldots^{2021^{2022}}}}}_{2022\text{ }2022\text{'}s}.</math> Now, note that <math>a^b\equiv a^{b+10}\pmod{11}</math> for all <math>a</math> and <math>b.</math> This means that we can take <math>\pmod{10}</math> on <math>\underbrace{2022^{2021^{\ldots^{2021^{2022}}}}}_{2020\text{ }2021\text{'}s}\text{ and }\underbrace{2021^{2022^{\ldots^{2022^{2021}}}}}_{2021\text{ }2022\text{'}s}.</math> We can easily find that <math>\underbrace{2021^{2022^{\ldots^{2022^{2021}}}}}_{2021\text{ }2022\text{'}s}\equiv1^{\text{something}}\equiv1\pmod{10}.</math> In addition, <math>\underbrace{2022^{2021^{\ldots^{2021^{2022}}}}}_{2020\text{ }2021\text{'}s}\equiv2^{\text{something}\equiv1\pmod{4}}\equiv2\pmod{10}.</math> Thus, <math>\underbrace{2021^{2022^{\ldots^{2022^{2021}}}}}_{2021\text{ } 2021\text{'}s}\cdot\underbrace{2022^{2021^{\ldots^{2021^{2022}}}}}_{2022\text{ }2022\text{'}s}\equiv8^2\cdot9\equiv\boxed{4}\pmod{11}.</math> | First, note that <math>\underbrace{2021^{2022^{\ldots^{2022^{2021}}}}}_{2021\text{ } 2021\text{'}s}\cdot\underbrace{2022^{2021^{\ldots^{2021^{2022}}}}}_{2022\text{ }2022\text{'}s}\equiv\underbrace{8^{2022^{\ldots^{2022^{2021}}}}}_{2021\text{ } 2021\text{'}s}\cdot\underbrace{9^{2021^{\ldots^{2021^{2022}}}}}_{2022\text{ }2022\text{'}s}.</math> Now, note that <math>a^b\equiv a^{b+10}\pmod{11}</math> for all <math>a</math> and <math>b.</math> This means that we can take <math>\pmod{10}</math> on <math>\underbrace{2022^{2021^{\ldots^{2021^{2022}}}}}_{2020\text{ }2021\text{'}s}\text{ and }\underbrace{2021^{2022^{\ldots^{2022^{2021}}}}}_{2021\text{ }2022\text{'}s}.</math> We can easily find that <math>\underbrace{2021^{2022^{\ldots^{2022^{2021}}}}}_{2021\text{ }2022\text{'}s}\equiv1^{\text{something}}\equiv1\pmod{10}.</math> In addition, <math>\underbrace{2022^{2021^{\ldots^{2021^{2022}}}}}_{2020\text{ }2021\text{'}s}\equiv2^{\text{something }\equiv1\pmod{4}}\equiv2\pmod{10}.</math> Thus, <math>\underbrace{2021^{2022^{\ldots^{2022^{2021}}}}}_{2021\text{ } 2021\text{'}s}\cdot\underbrace{2022^{2021^{\ldots^{2021^{2022}}}}}_{2022\text{ }2022\text{'}s}\equiv8^2\cdot9\equiv\boxed{4}\pmod{11}.</math> | ||
~pinkpig | ~pinkpig | ||
Latest revision as of 11:14, 23 December 2021
Problem
Find the remainder when
is divided by 11.
Solution
First, note that
Now, note that
for all
and
This means that we can take
on
We can easily find that
In addition,
Thus,
~pinkpig