1991 AHSME Problems/Problem 6: Difference between revisions
Created page with "If <math>x\geq 0</math>, then <math>\sqrt{x\sqrt{x\sqrt{x}}}=</math> (A) <math>x\sqrt{x}</math> (B) <math>x \sqrt[4]{x}</math> (C) <math>\sqrt[8]{x}</math> (D) <math>\sqrt[8]{x^..." |
MRENTHUSIASM (talk | contribs) No edit summary |
||
| (6 intermediate revisions by 4 users not shown) | |||
| Line 1: | Line 1: | ||
== Problem == | |||
If <math>x\geq 0</math>, then <math>\sqrt{x\sqrt{x\sqrt{x}}}=</math> | If <math>x\geq 0</math>, then <math>\sqrt{x\sqrt{x\sqrt{x}}}=</math> | ||
(A) | <math>\textbf{(A) } x\sqrt{x}\qquad | ||
\textbf{(B) } x\sqrt[4]{x}\qquad | |||
\textbf{(C) } \sqrt[8]{x}\qquad | |||
\textbf{(D) } \sqrt[8]{x^3}\qquad | |||
\textbf{(E) } \sqrt[8]{x^7}</math> | |||
== Solution == | |||
Recall that square roots are one-half powers, namely <math>\sqrt y=y^{\frac12}</math> for all <math>y\geq0.</math> | |||
We have | |||
<cmath>\begin{align*} | |||
\sqrt{x\sqrt{x\sqrt{x}}} &= \sqrt{x\sqrt{x\cdot x^{\frac12}}} \\ | |||
&= \sqrt{x\sqrt{x^{\frac32}}} \\ | |||
&= \sqrt{x\cdot\left(x^{\frac32}\right)^{\frac12}} \\ | |||
&= \sqrt{x^{\frac74}} \\ | |||
&= \left(x^{\frac74}\right)^{\frac12} \\ | |||
&= x^{\frac78} \\ | |||
&= \boxed{\textbf{(E) } \sqrt[8]{x^7}}. | |||
\end{align*}</cmath> | |||
~Hapaxoromenon (Solution) | |||
~MRENTHUSIASM (Reformatting) | |||
== See also == | |||
{{AHSME box|year=1991|num-b=5|num-a=7}} | |||
[[Category: Introductory Algebra Problems]] | |||
{{MAA Notice}} | |||
Latest revision as of 17:13, 5 September 2021
Problem
If
, then
Solution
Recall that square roots are one-half powers, namely
for all
We have
~Hapaxoromenon (Solution)
~MRENTHUSIASM (Reformatting)
See also
| 1991 AHSME (Problems • Answer Key • Resources) | ||
| Preceded by Problem 5 |
Followed by Problem 7 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
| All AHSME Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America.