Art of Problem Solving

1955 AHSME Problems/Problem 39: Difference between revisions

Justinlee2017 (talk | contribs)
Aopspandy (talk | contribs)
No edit summary
 
Line 1: Line 1:
==Problem==
If <math>y=x^2+px+q</math>, then if the least possible value of <math>y</math> is zero <math>q</math> is equal to:
<math>\textbf{(A)}\ 0\qquad\textbf{(B)}\ \frac{p^2}{4}\qquad\textbf{(C)}\ \frac{p}{2}\qquad\textbf{(D)}\ -\frac{p}{2}\qquad\textbf{(E)}\ \frac{p^2}{4}-q</math>
==Solution==
==Solution==



Latest revision as of 12:26, 19 July 2021

Problem

If $y=x^2+px+q$, then if the least possible value of $y$ is zero $q$ is equal to:

$\textbf{(A)}\ 0\qquad\textbf{(B)}\ \frac{p^2}{4}\qquad\textbf{(C)}\ \frac{p}{2}\qquad\textbf{(D)}\ -\frac{p}{2}\qquad\textbf{(E)}\ \frac{p^2}{4}-q$

Solution

The least possible value of $y$ is given at the $y$ coordinate of the vertex. The $x$- coordinate is given by \[\frac{-p}{(2)(1)} = \frac{-p}{2}\] Plugging this into the quadratic, we get \[y = \frac{p^2}{4} - \frac{p^2}{2} + q\] \[0 = \frac{p^2}{4} - \frac{2p^2}{4} + q\] \[0 = \frac{-p^2}{4} + q\] \[q = \frac{p^2}{4} = \boxed{B}\]

~JustinLee2017