2006 AMC 12B Problems/Problem 22: Difference between revisions
| (13 intermediate revisions by 10 users not shown) | |||
| Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
Suppose <math>a</math>, <math>b</math> and <math>c</math> are positive integers with <math>a+b+c=2006</math>, and <math>a!b!c!=m\cdot 10^n</math>, where <math>m</math> and <math>n</math> are integers and <math>m</math> is not divisible by <math>10</math>. What is the smallest possible value of <math>n</math>? | |||
== Solution == | <math> | ||
\mathrm{(A)}\ 489 | |||
\qquad | |||
\mathrm{(B)}\ 492 | |||
\qquad | |||
\mathrm{(C)}\ 495 | |||
\qquad | |||
\mathrm{(D)}\ 498 | |||
\qquad | |||
\mathrm{(E)}\ 501 | |||
</math> | |||
== Solution 1== | |||
The power of <math>10</math> for any factorial is given by the well-known algorithm | |||
<cmath>\left\lfloor \frac | |||
n{5}\right\rfloor + | |||
\left\lfloor \frac n{25}\right\rfloor + \left\lfloor \frac n{125}\right\rfloor + \cdots</cmath> | |||
It is rational to guess numbers right before powers of <math>5</math> because we won't have any extra numbers from higher powers of <math>5</math>. As we list out the powers of 5, it is clear that <math>5^{4}=625</math> is less than 2006 and <math>5^{5}=3125</math> is greater. Therefore, set <math>a</math> and <math>b</math> to be 624. Thus, c is <math>2006-(624\cdot 2)=758</math>. Applying the algorithm, we see that our answer is <math>152+152+188= \boxed{492}</math>. | |||
== Solution 2== | |||
Clearly, the power of <math>2</math> that divides <math>n!</math> is larger or equal than the power of <math>5</math> which divides | |||
it. Hence we are trying to minimize the power of <math>5</math> that will divide <math>a!b!c!</math>. | |||
Consider <math>n! = 1\cdot 2 \cdot \dots \cdot n</math>. Each fifth term is divisible by <math>5</math>, each <math>25</math>-th one | |||
by <math>25</math>, and so on. Hence the total power of <math>5</math> that divides <math>n</math> is <math>\left\lfloor \frac | |||
n{5}\right\rfloor + | |||
\left\lfloor \frac n{25}\right\rfloor + \cdots</math>. (For any <math>n</math> only finitely many terms in the sum | |||
are | |||
non-zero.) | |||
In our case we have <math>a<2006</math>, so the largest power of <math>5</math> that will be less than <math>a</math> is at most | |||
<math>5^4 = 625</math>. Therefore the power of <math>5</math> that divides <math>a!</math> is equal to <math>\left\lfloor \frac | |||
a{5}\right\rfloor + | |||
\left\lfloor \frac a{25}\right\rfloor + \left\lfloor \frac a{125}\right\rfloor + \left\lfloor \frac | |||
a{625}\right\rfloor </math>. The same | |||
is true for <math>b</math> and <math>c</math>. | |||
Intuition may now try to lure us to split <math>2006</math> into <math>a+b+c</math> as evenly as possible, giving | |||
<math>a=b=669</math> and <math>c=668</math>. However, this solution is not optimal. | |||
To see how we can do better, let's rearrange the terms as follows: | |||
<cmath> | |||
\begin{align*} | |||
\text{result} | |||
& = \Big\lfloor \frac a{5}\Big\rfloor + \Big\lfloor \frac b{5}\Big\rfloor + \Big\lfloor \frac | |||
c{5}\Big\rfloor | |||
\\ | |||
& + \Big\lfloor \frac a{25}\Big\rfloor + \Big\lfloor \frac b{25}\Big\rfloor + \Big\lfloor \frac | |||
c{25}\Big\rfloor | |||
\\ | |||
& + \Big\lfloor \frac a{125}\Big\rfloor + \Big\lfloor \frac b{125}\Big\rfloor + \Big\lfloor \frac | |||
c{125}\Big\rfloor | |||
\\ | |||
& + \Big\lfloor \frac a{625}\Big\rfloor + \Big\lfloor \frac b{625}\Big\rfloor + \Big\lfloor \frac | |||
c{625}\Big\rfloor | |||
\end{align*} | |||
</cmath> | |||
The idea is that the rows of the above equation are roughly equal to <math>\left\lfloor \frac | |||
n{5}\right\rfloor</math>, <math>\left\lfloor \frac n{25}\right\rfloor</math>, etc. | |||
More precisely, we can now notice that for any positive integers <math>a,b,c,k</math> we can write <math>a,b,c</math> in the form <math>a=a_0k | |||
+ a_1</math>, <math>b=b_0k+b_1</math>, <math>c=c_0k + c_1</math>, where all <math>a_i,b_i,c_i</math> are integers and <math>0\leq | |||
a_1,b_1,c_1<k</math>. | |||
It follows that | |||
<cmath>\Big\lfloor \frac a{k}\Big\rfloor + \Big\lfloor \frac b{k}\Big\rfloor + \Big\lfloor \frac | |||
c{k}\Big\rfloor = a_0+b_0+c_0</cmath> | |||
and | |||
<cmath>\Big\lfloor \frac {a+b+c}k\Big\rfloor = a_0 + b_0 + c_0 + \Big\lfloor \frac | |||
{a_1+b_1+c_1}k\Big\rfloor \leq a_0 + b_0 + c_0 + 2 </cmath> | |||
Hence we get that for any positive integers <math>a,b,c,k</math> we have | |||
<cmath> | |||
\Big\lfloor \frac a{k}\Big\rfloor + \Big\lfloor \frac b{k}\Big\rfloor + \Big\lfloor \frac | |||
c{k}\Big\rfloor | |||
\quad | |||
\geq | |||
\quad | |||
\Big\lfloor \frac {a+b+c}k\Big\rfloor - 2 | |||
</cmath> | |||
Therefore for any <math>a,b,c</math> the result is at least <math>\left\lfloor \frac n{5}\right\rfloor + | |||
\left\lfloor \frac n{25}\right\rfloor + \left\lfloor \frac n{125}\right\rfloor + | |||
\left\lfloor \frac n{625}\right\rfloor - 8 = 401 + 80 + 16 + 3 - 8 = 500 - 8 = 492</math>. | |||
If we now show how to pick <math>a,b,c</math> so that we'll get the result <math>492</math>, we will be done. | |||
Consider the row with <math>625</math> in the denominator. We need to achieve sum <math>1</math> in this row, | |||
hence we need to make two of the numbers smaller than <math>625</math>. Choosing <math>a=b=624</math> | |||
does this, and it will give us the largest possible remainders for <math>a</math> and <math>b</math> in | |||
the other three rows, so this is a pretty good candidate. We can compute | |||
<math>c=2006-a-b=758</math> and verify that this triple gives the desired result <math>\boxed{492}</math>. | |||
== See also == | == See also == | ||
{{AMC12 box|year=2006|ab=B|num-b=21|num-a=23}} | |||
{{MAA Notice}} | |||
Latest revision as of 14:52, 23 June 2021
Problem
Suppose
,
and
are positive integers with
, and
, where
and
are integers and
is not divisible by
. What is the smallest possible value of
?
Solution 1
The power of
for any factorial is given by the well-known algorithm
It is rational to guess numbers right before powers of
because we won't have any extra numbers from higher powers of
. As we list out the powers of 5, it is clear that
is less than 2006 and
is greater. Therefore, set
and
to be 624. Thus, c is
. Applying the algorithm, we see that our answer is
.
Solution 2
Clearly, the power of
that divides
is larger or equal than the power of
which divides
it. Hence we are trying to minimize the power of
that will divide
.
Consider
. Each fifth term is divisible by
, each
-th one
by
, and so on. Hence the total power of
that divides
is
. (For any
only finitely many terms in the sum
are
non-zero.)
In our case we have
, so the largest power of
that will be less than
is at most
. Therefore the power of
that divides
is equal to
. The same
is true for
and
.
Intuition may now try to lure us to split
into
as evenly as possible, giving
and
. However, this solution is not optimal.
To see how we can do better, let's rearrange the terms as follows:
The idea is that the rows of the above equation are roughly equal to
,
, etc.
More precisely, we can now notice that for any positive integers
we can write
in the form
,
,
, where all
are integers and
.
It follows that
and
Hence we get that for any positive integers
we have
Therefore for any
the result is at least
.
If we now show how to pick
so that we'll get the result
, we will be done.
Consider the row with
in the denominator. We need to achieve sum
in this row,
hence we need to make two of the numbers smaller than
. Choosing
does this, and it will give us the largest possible remainders for
and
in
the other three rows, so this is a pretty good candidate. We can compute
and verify that this triple gives the desired result
.
See also
| 2006 AMC 12B (Problems • Answer Key • Resources) | |
| Preceded by Problem 21 |
Followed by Problem 23 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |
These problems are copyrighted © by the Mathematical Association of America.