Art of Problem Solving

2004 AMC 10A Problems/Problem 2: Difference between revisions

Jackzhou (talk | contribs)
Hashtagmath (talk | contribs)
No edit summary
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
==Video Solution ==
https://youtu.be/KfjB4--G-Lc
Education, the Study of Everything
== Problem ==
== Problem ==
For any three real numbers <math>a</math>, <math>b</math>, and <math>c</math>, with <math>b\neq c</math>, the operation <math>\otimes</math> is defined by:
For any three real numbers <math>a</math>, <math>b</math>, and <math>c</math>, with <math>b\neq c</math>, the operation <math>\otimes</math> is defined by:
Line 13: Line 5:


<math> \mathrm{(A) \ } -\frac{1}{2}\qquad \mathrm{(B) \ } -\frac{1}{4} \qquad \mathrm{(C) \ } 0 \qquad \mathrm{(D) \ } \frac{1}{4} \qquad \mathrm{(E) \ } \frac{1}{2} </math>
<math> \mathrm{(A) \ } -\frac{1}{2}\qquad \mathrm{(B) \ } -\frac{1}{4} \qquad \mathrm{(C) \ } 0 \qquad \mathrm{(D) \ } \frac{1}{4} \qquad \mathrm{(E) \ } \frac{1}{2} </math>


== Solution ==
== Solution ==
<math>\otimes \left(\frac{1}{2-3},\frac{2}{3-1},\frac{3}{1-2}\right)=\otimes(-1,1,-3)=\frac{-1}{1+3}=-\frac{1}{4}\Longrightarrow\boxed{\mathrm{(B)}\ -\frac{1}{4}}</math>
<math>\otimes \left(\frac{1}{2-3},\frac{2}{3-1},\frac{3}{1-2}\right)=\otimes(-1,1,-3)=\frac{-1}{1+3}=-\frac{1}{4}\Longrightarrow\boxed{\mathrm{(B)}\ -\frac{1}{4}}</math>


== See also ==
 
==Video Solution ==
https://youtu.be/KfjB4--G-Lc
 
Education, the Study of Everything
 
 
== See Also ==
{{AMC10 box|year=2004|ab=A|num-b=1|num-a=3}}
{{AMC10 box|year=2004|ab=A|num-b=1|num-a=3}}


[[Category:Introductory Algebra Problems]]
[[Category:Introductory Algebra Problems]]
{{MAA Notice}}
{{MAA Notice}}

Latest revision as of 13:13, 21 April 2021

Problem

For any three real numbers $a$, $b$, and $c$, with $b\neq c$, the operation $\otimes$ is defined by: \[\otimes(a,b,c)=\frac{a}{b-c}\] What is $\otimes(\otimes(1,2,3),\otimes(2,3,1),\otimes(3,1,2))$?

$\mathrm{(A) \ } -\frac{1}{2}\qquad \mathrm{(B) \ } -\frac{1}{4} \qquad \mathrm{(C) \ } 0 \qquad \mathrm{(D) \ } \frac{1}{4} \qquad \mathrm{(E) \ } \frac{1}{2}$


Solution

$\otimes \left(\frac{1}{2-3},\frac{2}{3-1},\frac{3}{1-2}\right)=\otimes(-1,1,-3)=\frac{-1}{1+3}=-\frac{1}{4}\Longrightarrow\boxed{\mathrm{(B)}\ -\frac{1}{4}}$


Video Solution

https://youtu.be/KfjB4--G-Lc

Education, the Study of Everything


See Also

2004 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America.