Art of Problem Solving

2007 Cyprus MO/Lyceum/Problem 2: Difference between revisions

I_like_pie (talk | contribs)
No edit summary
 
I_like_pie (talk | contribs)
No edit summary
 
(3 intermediate revisions by 2 users not shown)
Line 5: Line 5:


==Solution==
==Solution==
<math>f(x+1)-f(x)=4^{x+1}-4^x=4\cdot4^x-4^x=4^x\cdot(4-1)=3\cdot4^x\Rightarrow\mathrm{ E}</math>
<math>f(x+1)-f(x)=4^{x+1}-4^x=4\cdot4^x-4^x=(4-1)\cdot4^x=3\cdot4^x\Longrightarrow\mathrm{ E}</math>


==See also==
==See also==
*[[2007 Cyprus MO/Lyceum/Problems]]
{{CYMO box|year=2007|l=Lyceum|num-b=1|num-a=3}}


*[[2007 Cyprus MO/Lyceum/Problem 1|Previous Problem]]
[[Category:Introductory Algebra Problems]]
 
*[[2007 Cyprus MO/Lyceum/Problem 3|Next Problem]]

Latest revision as of 19:30, 6 May 2007

Problem

Given the formula $f(x) = 4^x$, then $f(x+1)-f(x)$ equals to

$\mathrm{(A) \ } 4\qquad \mathrm{(B) \ } 4^x\qquad \mathrm{(C) \ } 2\cdot4^x\qquad \mathrm{(D) \ } 4^{x+1}\qquad \mathrm{(E) \ } 3\cdot4^x$

Solution

$f(x+1)-f(x)=4^{x+1}-4^x=4\cdot4^x-4^x=(4-1)\cdot4^x=3\cdot4^x\Longrightarrow\mathrm{ E}$

See also

2007 Cyprus MO, Lyceum (Problems)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30