2010 AMC 12B Problems/Problem 12: Difference between revisions
No edit summary |
No edit summary |
||
| (6 intermediate revisions by 4 users not shown) | |||
| Line 1: | Line 1: | ||
== Problem | == Problem == | ||
For what value of <math>x</math> does | For what value of <math>x</math> does | ||
| Line 6: | Line 6: | ||
<math>\textbf{(A)}\ 8 \qquad \textbf{(B)}\ 16 \qquad \textbf{(C)}\ 32 \qquad \textbf{(D)}\ 256 \qquad \textbf{(E)}\ 1024</math> | <math>\textbf{(A)}\ 8 \qquad \textbf{(B)}\ 16 \qquad \textbf{(C)}\ 32 \qquad \textbf{(D)}\ 256 \qquad \textbf{(E)}\ 1024</math> | ||
== Solution == | == Solution 1== | ||
<cmath> \log_{\sqrt{2}}\sqrt{x} + \log_2x + \log_4(x^2) + \log_8(x^3) + \log_{16}(x^4) = 40 </cmath> | <cmath> \log_{\sqrt{2}}\sqrt{x} + \log_2x + \log_4(x^2) + \log_8(x^3) + \log_{16}(x^4) = 40 </cmath> | ||
<cmath> \frac{1}{2} \frac{\log_2x}{\log_2\sqrt{2}} + \log_2x + \frac{2\log_2x}{\log_24} + \frac{3\log_2x}{\log_28} + \frac{4\log_2x}{\log_216} = 40 </cmath> | <cmath> \frac{1}{2} \frac{\log_2x}{\log_2\sqrt{2}} + \log_2x + \frac{2\log_2x}{\log_24} + \frac{3\log_2x}{\log_28} + \frac{4\log_2x}{\log_216} = 40 </cmath> | ||
<cmath> \log_2x + \log_2x + \log_2x + \log_2x + \log_2x = 40 </cmath> | <cmath> \log_2x + \log_2x + \log_2x + \log_2x + \log_2x = 40 </cmath> | ||
<cmath> 5\log_2x = 40 </cmath> | <cmath> 5\log_2x = 40 </cmath> | ||
<cmath> \log_2x = 8 </cmath> | <cmath> \log_2x = 8 </cmath> | ||
<cmath> x = 256 \;\; (D) </cmath> | <cmath> x = 256 \;\; (D) </cmath> | ||
==Solution 2== | |||
Using the fact that <math>\log_{x^n}{y^n} = \log_{x}{y}</math>, we see that the equation becomes <math>\log_{2}{x} + \log_{2}{x} + \log_{2}{x} + \log_{2}{x} + \log_{2}{x} = 40</math>. Thus, <math>5\log_{2}{x} = 40</math> and <math>\log_{2}{x} = 8</math>, so <math>x = 2^8 = 256</math>, or <math>\boxed{(D)}</math>. | |||
== See also == | == See also == | ||
{{AMC12 box|year=2010|num-b= | {{AMC12 box|year=2010|num-b=11|num-a=13|ab=B}} | ||
{{MAA Notice}} | |||
Latest revision as of 15:41, 15 February 2021
Problem
For what value of
does
Solution 1
Solution 2
Using the fact that
, we see that the equation becomes
. Thus,
and
, so
, or
.
See also
| 2010 AMC 12B (Problems • Answer Key • Resources) | |
| Preceded by Problem 11 |
Followed by Problem 13 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |
These problems are copyrighted © by the Mathematical Association of America.